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ABSTRACT 

GROUNDWATER CONTAMINATION POTENTIAL IN NORTHERN 
NEVADA FROM MINING, ASSOCIATED COMMUNITIES, AND 
AGRICULTURE AS FORECASTED BY TWO VULNERABILITY 

METHODS 

by 

John L. Swatzell 

Dr. Jacimaria R. Batista, Examination Committee Chair 
Associate Professor of Civil and Environmental Engineering 

University of Nevada, Las Vegas 
 

Two methodologies, DRASTIC and the NDEP method, were used to compare the 

groundwater vulnerability of mining, associated towns, and agricultural areas in northern 

Nevada.  The DRASTIC and NDEP methods were compared to determine which method 

produces a more accurate depiction of vulnerability.  Vulnerability maps were created 

using the United States Environmental Protection Agency’s (USEPA) DRASTIC and 

Nevada Department of Environmental Protection (NDEP) methodologies.  The 

DRASTIC map uses seven aspect layers of geologic and hydrologic information with 

assigned values and weights that are applied to a mathematical equation. The NDEP 

method uses field data collection for potential contaminant sources and well construction, 

well geological and hydrological information, and water quality data to create a 

vulnerability map.  The map was created by applying values and weights to each aspect 

influencing the vulnerability and applied to a mathematical equation. 

To compare the two methods, a correlation was performed using historic water 

quality data for naturally occurring and anthropogenic contaminants.  The DRASTIC and 
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the NDEP method indicated that the vulnerability to groundwater contamination of 

mining areas and towns are similar with mining in regions of low to moderate and towns 

in regions of moderate to high.  Agricultural regions were ranked differently by each 

method. DRASTIC indicated that agricultural areas were in regions of high vulnerability 

whereas the NDEP method indicated that it was in regions of very low to low 

vulnerability. 

It can be concluded from the results that the NDEP method can forecast expected 

contamination with naturally occurring contaminants (e.g. arsenic, fluoride and 

radionuclides) better than DRASTIC.  Both methods could not forecast very well 

expected contamination with anthropogenic nitrate. The NDEP method uses historic 

water quality data as a parameter which may account for the better forecasting ability.  It 

appears that the NDEP method is sensitive to the number of contaminant sources present 

around a well. The NDEP method requires extensive field survey data whereas the 

DRASTIC method uses data that is widely available.  Therefore, the cost to implement 

the NDEP method is much higher and time consuming compared to the DRASTIC 

method.   
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CHAPTER 1 

INTRODUCTION 

The generation of large amounts of industrial waste is commonly associated with 

gold and silver mining, which can be potentially damaging to the environment, 

specifically to groundwater supplies. These mines require scrupulous operational 

methods to produce their prospective commodity and reduce the potential of 

contamination.  Mining operations include a large labor force, industrial vehicles, 

excavation equipment, ore processing mills, and mineral extraction and refining facilities 

that can result in the generation of pollution.  Whether it is oil from haul truck 

maintenance, or percolating hydrocarbons from a corroded fuel storage tank, these 

operational resources present a certain level of contamination risk to the groundwater in 

the area (Prasad, et al., 1991).  The mining industry's groundwater contamination 

footprint can extend outside of the mine boundaries depending on the mine’s required 

labor force.  Because most mining is carried out outside urban areas, as a mine expands 

its demand for labor, communities develop around the mining areas or nearby 

communities experience an increase in population.  The increase in population requires   

some basic infrastructure, such as gas stations, car washes, septic tanks, dry cleaning,  

etc. which also can potentially impact the quality of the groundwater supply system they 

depend on (Toll, 2004). 
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Advancements in mining technologies have expanded the potential of ore mining 

enabling modern day mines to flourish in regions that were historically deemed 

uneconomical production zones (Prasad, et al., 1991; Haris & Krol, 1989; Toll, 2004).  

With increased mining activities the demand for mining personnel is amplified, which 

adds to the growth of nearby communities, altering the town’s economic force (Craig & 

Rimstidt, 1998).   

Historically, several towns have been ranching communities where mines are 

currently being established.  This results in a shift of the economic structure for these 

towns.  This shift often brings increased growth, and generally no change or a decrease in 

agriculture.  However, agricultural practices of the past should be taken into 

consideration when evaluating contamination in mining areas.  It can take many years for 

pesticides to leach into the groundwater after farming has been abandoned in the area 

(Hallberg, 1987; Nolan & Hitt, 2006). 

Both mining activities and the community growth associated with it have the 

potential to negatively impact groundwater resources in the areas where mining is 

established.  Gold and silver mining generates waste that can include cyanide from ore 

leaching, acid from ore oxidation, and volatile organic compounds from machinery 

fueling and maintenance (Prasad, et al., 1991).  Communities associated with mining 

need infrastructure such as septic tanks, gas stations, dry cleaning/laundromat, car 

washes, hospitals, etc., which also present contamination risks to groundwater resources.  

With these activities associated with towns there tends to be minimal public scrutiny.  

Historically, potential groundwater contamination by mining activities has received much 

scrutiny than contamination caused by the infrastructure of mining towns.  In this 
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research, the potential risk for groundwater contamination by gold and silver mining 

activities will be contrasted with that of their associated mining town’s infrastructure and 

agricultural activities.  

Nevada’s gold and silver mining industry has been a significant and vital 

component for the state’s economic, social, and political landscape since the Comstock 

Lode discovery of 1859 (Smith, 1943; Thorstad, 1989).  Nevada produced 5.03 million 

ounces of gold in 2009 which represents about 66 percent of the U.S. gold production 

(Gold Sheet, 2010; Associated Press, 2010).  This equates to roughly 5.6 percent of the 

overall world production (Gold Sheet, 2010).  Such massive natural resource exploration 

efforts inevitably leave their most visible effects on mineral rich mountain passes; 

however, it’s the less obvious impacts to the environment, such as groundwater 

contamination, that could ultimately prove to be the most detrimental to the development 

of future economic activities in the area, including mining itself.  

Nevada mining has inadvertently altered historic land use in regions such as 

agriculture and urban development.  From this large industry, towns have grown to 

support the labor force needed in the operation of modern mining.  As these towns grow 

and expand, they may encroach on historic agricultural areas.  This promotes a 

reassignment of potential groundwater contamination sources from applications of 

fertilizer to supporting gas stations, car washes, and dry cleaning.  The existence of a 

dynamic environment hosting the three land activities of mining, agriculture, and towns 

provides further evidence to the need to compare groundwater contamination potential 

from these activities with an unbiased view. 
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It is important to recognize and understand the potential of groundwater 

contamination without a biased opinion so that regulations and management strategies 

can be developed to manage the allocation of future land use and to prevent groundwater 

pollution in such areas.  In areas where water is a scarce resource, such as in Nevada and 

other arid regions, it is even more important to understand the associated risks to 

groundwater contamination.  Activities from mining, mining towns, and agriculture may 

negatively impact the same aquifer and have the potential to harm multiple communities 

or regions.  Therefore there is a need to explore the impacts to groundwater that are 

associated with mining activities and mining towns.  This evaluation will determine the 

potential risk of these activities that impact groundwater quality; such determination is 

essential for understanding the broader implications of these related activities.   

Because of concerns that these activities represent an environmental pollution risk 

to groundwater sources two research questions are being asked.  The first question; does 

gold and silver mining create a greater potential of contamination compared to the 

contamination risk potential from associated mining communities?  The second question; 

by comparing two index vulnerability methods, which method has a better ability to 

forecast groundwater vulnerability. 

RESEARCH OBJECTIVES AND HYPOTHESIS 

In this research, two methodologies to characterize groundwater contamination 

vulnerability, DRASTIC (Aller, et al., 1987) and the NDEP index method (NDEP, 2006), 

will be compared.  In addition, the three predominant land use activities will be compared 
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to see which has the highest potential to contaminant groundwater.  DRASTIC was 

developed by the United States Environmental Protection Agency (USEPA) and involves 

collecting easily obtainable data from various open source data warehouses.  The Nevada 

Department of Environmental Protection (NDEP) method involves field surveying 

existing well/springs as well as associated potential contaminant sources to determine 

groundwater contamination vulnerability.  Because DRASTIC uses available electronic 

data and does not require field surveying, it is considerably less costly and can be 

performed faster.  Therefore, it is beneficial to investigate whether the vulnerability to 

groundwater contamination obtained by DRASTIC and NDEP methods are comparable. 

The vulnerability of groundwater resources will be characterized for mining, mining 

towns, and agricultural activities.  With the three land uses, a comparison can be made to 

evaluate the activity that presents the highest vulnerability for groundwater 

contamination.  

 The region of northeastern Nevada contains a reasonable amount of the three 

land uses sharing similar features that influence groundwater vulnerability.  These 

features include climate, hydrogeology, geology, and land use activity, such as potential 

contaminant sources and population influxes.  In addition, well construction can play a 

role in potential contaminant transport to groundwater deserving consideration in the 

vulnerability assessment.  Table 1 depicts several factors that may influence groundwater 

vulnerability to contamination. 
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Table 1 – NDEP Vulnerability Factors 

Well Water Quality Hydrogeological Factors Well/Spring Construction 

VOC Detection Contaminant Source Direction Adequate Construction 

SOC Detection Time of Travel Seal Depth 

Dioxin Detection Aquifer Type Casing Terminate 

IOC Detection Static Water Depth Screen Depth 

Asbestos Detection Confining Layer Construction Defects 

Total Coliform Detection Contaminant Mobility Overburden Depth 

E Coli Detection Contaminant Persistence   

Radionuclide Detection Contaminations Occurrence   

Nitrate Detection Method to Control Contamination   

 

Historically, mining activities have been considered to have a significant impact 

on groundwater resources.  Contaminant sources present in mining towns and agricultural 

areas may be as potentially detrimental to groundwater as mining is itself, but these 

activities are often perceived as less harmful.  This study may reveal that groundwater in 

mining towns and agricultural areas have similar or greater vulnerability to contamination 

than groundwater located in mining areas.  It is expected that both methodologies will 

produce similar results because hydrogeological features, which are inherent to the 

specific areas, play a major role in the vulnerability determination with both methods.  It 

is also expected that groundwater located in towns are as vulnerable to contamination as 

groundwater located in areas where mining operations are located. 
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CHAPTER 2 

BACKGROUND 

2.1Geology 

The geology of Nevada consists of mountain ranges and valleys with the ranges 

oriented in a north-south direction averaging sixty to eighty miles long and about ten 

miles wide.  These ranges tend to be bounded by faults, typically normal faults on one or 

both sides.  Nevada is also the third most seismically active state with California as first 

and Alaska as second (Price, 2003).  This activity provides much of the geothermal 

activity which relates to the mineralization of metals.   

Gold producing areas in the northeastern region of Nevada, particularly the Carlin 

Trend, have deposits of gold-silver mix produced by mineralization from geothermic 

activity.  The gold is deposited into the regional sedimentary soil strata from rich carbon 

dioxide (CO2) and Hydrogen sulfide (H2S) water that has been heated by the geothermic 

activity and the resultant pressures (Zimmerman, 1991).  With the up heaving from 

seismic activity, the deposited gold mineralization begins creating the gold deposits in 

this region.  These deposits are typically siliceous on the western portion of the Carlin 

Trend and carbonate on the eastern portion.  These soil strata types allow for the 
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necessary geochemical processes to allow the mineralization of the gold (Jones, 1989; 

Johnston, et al., 2008). 

The hydrogeology of Nevada is comprised of approximately fifty-one percent 

consolidated rock and forty-nine percent of unconsolidated sediments.  Nevada is 

typically classified as low to moderate rate of precipitation with low soil permeability.  

The Northeastern region of Nevada tends to have above average precipitation and 

moderate soil permeability (Maurer, et al., 2004).  As described above, much of Nevada’s 

groundwater is isolated from one region to the other based on these physical barriers.   

The two primary types of mineral bearing ore found in northeastern Nevada are 

carbonate and siliceous.  The carbonate ores tend to be located on the eastern face of 

thrust faults and the siliceous tend to be found on the western side.  These mineral 

formations of the eastern regions are usually assemblage of carbonate, quartzite, and 

shale where as the western regions assemblage is of chert, perlite, sandstone, greenstone, 

and minor carbonate (Jones, 1989). 

2.2 Gold/Silver Mining Operations 

Hard rock mining, typical for precious metal mining, uses two main methods, 

open pit and underground bore mining.  Each has its own techniques and processes to 

extract the gold bearing ore.  Open pit mining is essentially surface mining to create a 

hole or pit as the mining processes continue.  This technique requires the removal of 

some amount of soil layer that is covering the mineral rich strata.  This barren soil is 

referred as over-burden which is removed and stock piled.  Open pit mining is performed 

by creating ledges as the mine gains in depth for safety from falling rocks and ease of 
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access for mining equipment (Cobb, et al., 1988).  Underground mining is a technique 

where a shaft or bore is placed such that it will gain access to a vein of the sought after 

minerals.  The shaft follows the veins which can create a network of passages and levels 

to the mine.  Careful consideration must be taken to ensure efficient removal of the ore 

and ensuring the integrity of the mine shaft (Cummins, et al., 1992). 

Ore processing is mechanically altering the ore to a reasonable size for extracting 

the minerals, i.e. gold/silver.  These processes can include blasting the rock from the 

ground, crushing, and milling the ore.  Blasting techniques including charge power and 

placement play an important role in minimizing other processes and increasing 

production.  By using modern techniques and geologic inspection of the strata for charge 

placement, the ore can be fractured to a desired size (Eloranta, 2001).   

Ore processing require crushing the ore to be within certain sizes that will 

maximize the extraction process.  For heap leaching, the ore should be within the 

classification of cobles and gravel to ensure an even flow over the ore and minimizing 

channelization (Cobb, et al., 1988).  The common equipment is a cone crusher, jaw 

crusher, and possibly the ball mill.  Each process is chosen by the individual mine based 

on cost and ore type (Cummins, et al., 1992).  Each technique uses a different mechanism 

for crushing.  Raw ore from the mine of non-uniform size is broken via mechanical 

methods to a uniform size. 

Milling the ore is the next phase of ore processing.  The ore is received from the 

crusher, usually a higher grade ore, and ground to a size classified as sand or smaller.  

This smaller size enables a quicker contact during leaching with the gold for a higher 
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extraction yield.  Several methods can be used in this step that may include a ball mill or 

other proprietary milling machines.  The technique for milling is chosen by the individual 

mine which is based on types of ore and cost of operation and maintenance of the 

equipment (Cummins, et al., 1992).  Milling is simply reducing the ore from the crushing 

stage to a smaller size for vat leaching. 

Refractory ores are ores that need additional treatment prior to the leaching 

process and tend to be a low grade ore.  Depending on the type of ore different processes 

are used for treatment.  Typically in the northeastern part of Nevada the ore may have 

sulfides present in the ore preventing the leaching action to occur (Jones, 1989).  The 

common practices are roasting the ore, applying chemicals, or using target specific 

bacteria to oxidize the ore (Prasad, et, al., 1991).  By oxidizing the ore, the leaching 

process is able to extract a significant amount more of the precious metal. Provided that 

precious metal prices are high, this process can increase the production output of the 

mine yielding a greater profit (EPA, 1994; Haris & Krol, 1989). 

Biological ore oxidation utilizes bacteria that are compatible with the ore body, 

such as a carbonaceous or siliceous.  With the biological process, the oxidation occurs 

under the ideal conditions for the bacteria to thrive keeping a uniform temperature and 

pH.  Maintaining these conditions will ensure the bacteria will grow and reproduce to 

maintain ore oxidation.  The end process will result in an ore that can be introduced to the 

cyanidation process without the competing compounds in the ore.  The waste of the 

biological sludge may be placed in along with the tailings (Prasad, et al., 1991).  
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The chemical processes of oxidation are typically acid leaching or pressure 

leaching using either an alkaline or acid media also referred to as autoclaving.  Chemical 

oxidation is predominately used for carbonaceous ores using chlorine (Haris & Krol, 

1989; Prasad, et al., 1991).  Initially, chlorine is added to the solution to oxidize the ore.  

Additional chlorine is added in a second step to form hydrochloric acid.  This acid helps 

to remove the sulfide pyrite from the ore so that the gold is readily exposed for the 

cyanidation process (Prasad, et al., 1991).  The alkaline process uses oxygen to oxidize 

the sulfides utilizing a higher pH to optimize the oxidation of the ore.  This process is not 

used often because of concerns with toxic gases such as sulfur dioxide (Alp, et al., 2010). 

A common ore processing technique used to extract gold/silver from ores is 

dissolution with cyanide solutions (cyanidation).  Cyanidation can be performed using 

heap leaching or vat leaching (Prasad, et al., 1991).  In heap leaching, cyanide is applied 

to piles of crushed ore built outdoors.  In vat leaching, a cyanide solution is applied to 

finely crushed ore placed in tanks (i.e. vats) housed typically in a building.  Depending on 

the ore body, the ore may have to be oxidized before cyanidation can be applied.   

2.3 Gold/Silver Extraction Processes 

Common extraction process for high grade gold/silver ores is Vat leaching.  With 

vat leaching the process is normally located inside a building with several vats (e.g. 

tanks) loaded in series to maximize the rate of leaching.  This process has a high capital 

cost in relation to heap leaching so only high grade ore is processed using this method 

(Cope, 1999).  Vat leaching consists of essentially grinding the ore to a size equivalent to 

that of sand or smaller and adding it to a cyanide solution. This will result in a pulp that is 

constantly agitated to maximize the contact of the ore and the solution to optimize the 
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gold extraction (Prasad, et al., 1991).  A continuous supply of the cyanide solution is fed 

into the vat as the solution loaded with the gold, referred to as pregnant solution, is 

siphoned off from the pulp.  The solution is typically sent through activated carbon for 

gold adsorption and recovery, but other processes can be applied.   

Heap leaching is a simple technique that has been in use for many years used to 

extract gold/silver from low grade ore.  This system of gold extraction is implemented by 

simply placing milled or crushed ore on a liner with a spray system to irrigate the 

leaching solution, typically a cyanide solution, over the ore.  The solution with the gold, 

the pregnant solution, is captured at one end of the liner and sent to a gold recovery 

process (EPA, 1994; Cobb, Dorey, et al., 1988).  This is a low cost gold extraction 

method and used throughout Nevada for low grade ores (Haris & Krol, 1989). 

Cyanidation is the primary mechanism for leaching gold from the ore in Nevada 

(EPA, 1994).  Typically sodium-cyanide is mixed in solution and applied to the ore via 

several different processes.  Due to the chemicals used in the leaching process and the 

potential for heap liner failure and spills from vat reactors, there are concerns from 

groundwater contamination associated with these types of operations. In general, 

cyanidation of gold can be expressed as  

4Au + 8NaCN + O2 + 2H2O = 4NaAu(CN)2 + 4NaOH 

With primary reactions of  

2Au + 4CN- +O2 + 2H2O = 2Au(CN)-
2 + H2O2 + 2OH- 

As well as 
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4Au + 8CN- + O2 +H2O = 4Au(CN)-
2 + 4OH- 

These reactions are the typical reactions for leaching with cyanide that is 

commonly used in most Nevada mines.  (Prasad, et al., 1991; Cobb, et al., 1988). 

The pregnant solution requires additional techniques to extract the gold out of 

solution.  The next treatment process is referred to as loading.  Loading uses activated 

carbon to absorb the gold cyanide.  This is possible because of the size of the compound, 

the size of the pores in the activated carbon and the high surface area of activated carbon, 

typically 1,050 to 1,150 square meters per gram of activated carbon (Cobb, et al., 1988).  

The cyanide solution, after gold cyanide has been removed is commonly referred to as 

barren solution and is often reprocessed to be reused in the leaching operation. 

After adsorption, the gold is eluted from the activated carbon using a concentrated 

cyanide solution. This stripping process results in a concentrated solution of gold cyanide 

and carbon that can be reactivated or discarded.  The concentrated solution from the 

carbon stripping is sent on to the last process step of gold extraction (Cobb, et al., 1988). 

The last step of extracting gold is called recovery.  This is where the gold is 

recovered from the elution solution.  Two primary methods are used for gold/silver 

recovery, the zinc-dust or Merill-Crowe method and electrowinning.  The Merrill-Crowe 

method uses a chemical reaction to precipitate the gold from solution.  Once the particles 

are formed the solution is filtered.  The layer of precipitate is removed from the filter and 

sent to be smelted.  The Merrill-Crowe method can be expressed as shown in the reaction 

below (Cobb, et al., 1988).  This reaction shown below is simplified and should be noted 

that impurities are collected with the gold. 
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2NaAu(CN)2  + Zn = NaZn(CN)4 + 2Au0 

Electro deposition or electrowinning process is a physical process utilizing 

electricity to separate the gold from the concentrated solution.  An anode and cathode are 

placed in the solution with an applied direct current (Cobb, et al., 1988).  The gold will 

then begin collecting on the cathode.  Once the collection process is complete the cathode 

is striped of the gold and sent to be smelted into dorẻ bars (Cummins, et al., 1992).  The 

simplified reaction for electrowinning is demonstrated in the following reactions.  As 

with the Merill-Crowe method the barren solution is reprocessed. 

4OH- = O2 + 2H2O + 4e- 

2e- + 2Au(CN)-
2 = 2Au0 + 4CN- 

Smelting is the final step of the process of extracting gold.  The collected gold 

from either the Merill-Crowe method or electrowinning is placed into a furnace with flux 

and heated to a melting temperature of about 2,100 °F (Cobb, et al., 1988).  Once melted 

slag forms at the top of the vessel, which is poured off or scraped off, the metal is poured 

into forms.  This molded metal is referred to a dorẻ.  The dorẻ bar, or other shape, is sent 

to a refinery for further processing and separate any other metals such as silver or copper 

(Cummins, et al., 1992). 

2.4 Ancillary Mining Facilities 

Modern gold mining operations in Nevada have become large operations that 

require onsite facilities for various operations.  These operations can include the ore 

crushing and milling facilities, ore processing facilities, gold/silver adsorption and 

stripping facilities, mechanical repair shops for heavy equipment, administration and 
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employee offices, as well as maintenance buildings.  In addition to this, most of these 

facilities require some amount of infrastructure such as roads to the mine, power lines or 

on site power plant, and water and sewer facilities.  The larger the operation, especially 

open pit mining, the larger ancillary facilities or area are required (Haris & Krol, 1989). 

Most modern gold mines are processing ore with mineral content fractions of an 

ounce per ton of ore.  Based on the volume needed to extract gold form a large amount of 

ore, large equipment is required to minimize cost and maximize production (Gosnell, 

1975).  Because of their large size, heavy mining equipment are often transported in parts 

and assembled onsite at the mine because of load weight and size limits.  These massive 

machines also require regular maintenance and repair, requiring facilities for these 

procedures (Myntti, 1979).   

Energy cost for mining operation is a significant part of the overhead cost (Gentry 

& O' Neil, 1984).  Often mines are located in remote areas with no or little infrastructure.  

Many mines prefer to operate with offsite power rather than operate diesel powered 

shovels and generation plants.  However, to offset this cost, mines will often elect to 

build the infrastructure to their properties that will help to minimize the overhead and to 

help ensure a reliable power source is maintained.  Without this reliable source of power 

mines can face hour or even days of operation delays because of short spikes or surges in 

power that will shutdown equipment (Jurbin, 2009). 

2.5 Mining Towns and Communities 

Elko, Nevada, as well as a few other mining towns, has experienced significant 

growth since the operation for production from the Carlin Trend gold belt was discovered 
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along with new mining techniques to extract the gold.  Elko’s population was fairly 

consistent reaching about 8,000 in 1980.  With the new mining activities Elko’s 

population has more than doubled in the past 30 years to 17,430 by 2009 (U.S. Census, 

2010).  Similar trends have been realized in Battle Mountain and Eureka due to the 

increased mining operations.  Prior to the opening of these mines, these towns were 

predominately cattle ranching towns with associated agriculture (Toll, 2004; Rota & 

Ekburg, 1988).   

The approximate current employment for northeastern Nevada, including counties 

of Elko, Eureka, Lander, and White Pine, in mining is approximately 6,000 employees.  

The approximate population for the same area is 64,000 people.  This relates to about one 

in ten people are employed in the mining industry (U.S. Census, 2010).  If we compare 

this number with 1980 data we see that the population for this region is approximately 

31,000 people.  For the same period the population employed in mining was 

approximately 2,200 resulting in about one in fourteen (U.S. Census, 1980).  This period 

is significant due to the permitting and beginning operations of several large mines in this 

region (Haris & Krol, 1989). 

Prior to the opening of several mines in the northeastern Nevada in 1980, the 

population involved in agriculture was approximately 1,600 people; that is, one in 

nineteen people.  Today the number of people employed in agriculture is approximately 

400 resulting in about one in one hundred seven (U.S. Census, 1980;  U.S. Census, 2010).  

This indicates that as mining has increased, employment in agriculture has decreased 

even with a significant increase in the regional population.  With these data it can be 
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assumed that the population growth increasing the sizes of the communities is related to 

the development and growth of the mines. 

2.6 Water Use and Consumption in Mining Areas and Communities 

Water is a constant issue in mining operations.  In some operations, dewatering of 

mining shafts is needed to continue mining. Mines rely on dewatering to allow for 

production in underground mining that is below the water table.  Dewatering also allows 

for steeper slopes in open pit mining maximizing the ore extraction while minimizing the 

overburden. Furthermore, water is needed to process the ore, to control dust in the mining 

site and in all extraction processes.  An important aspect of some gold mines that is the 

use of dewater water from underground mine shafts to providing water to the ancillary 

facilities.  Water is important for the leaching process where a large volume of water is 

required to extract the gold from the ore.  Water is also used for other minor services such 

as showers and sanitary systems. 

Dewatering wells can pump out in excess of 58,000 gallons per minute (GPM) 

depending on the water strata and the size of the mine (Chadwick, 1995).  From the 

dewater wells the majority of the water is used for mining processes which require some 

treatment.  For example, heap leaching recommended spray volume is 0.005 GPM per 

square foot of the leach pad.  Depending on the mines size and permits, this can be 

several thousand gallons per minute of water (sodium cyanide solution) being applied to 

the heap pad twenty four hours per day (Cobb, et al., 1988).  However, in some cases, the 

heap leaching need is only about ten to twenty percent of the water from dewatering 

wells.  Excess dewatering water in many mines is discharged either to a pond for 
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percolation or to a nearby water body or feature, as is the case for most mines in 

northeastern Nevada (Chadwick, 1995). 

In areas where dewatering water is not present in sufficient amounts, groundwater 

wells are drilled to provide water for mining operations. This water is essential in the 

process of extracting gold from less than 10 ounces per ton of ore with an average of 

about 6 ounces per ton in the northeastern region of Nevada (Heitt, 2002; Barrick, 2008; 

Yukon-Nevada Gold Corp., 2011).  With mining extracting 250,000 tons or more per day 

for the Carlin Trend, this amounts to a significant amount of water required for the 

mining processes (International Mining, 2011). 

Water consumption for towns is more than that of mines, but can be a smaller 

amount of actual water pumped from the aquifer.  For the northeastern portion of Nevada 

the water consumption per capita is about 228 gallons per day (Kenny, et al., 2005).  For 

a comparison the water consumption for the United States is about 158 gallons per day 

(Kenny, et al., 2005; Rockaway, et al., 2011).  To put this value into an annual volume, 

northeastern Nevada water consumption is equivalent to about 314,000 acre feet or 490 

square miles one foot deep.  Mining water actual consumption by comparison is about 

10% of that used by towns for northeastern Nevada (Kenny, et al., 2005). 

2.7 Sources to Groundwater Contamination 

Groundwater contamination can occur from point sources or non-point sources.  

Point sources are defined by the US EPA in section 502(14) of the clean water act as 

“The term "point source" means any discernible, confined and discrete conveyance, 

including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete 
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fissure, container, rolling stock, concentrated animal feeding operation, or vessel or 

other floating craft, from which pollutants are or may be discharged. This term does not 

include agricultural storm water discharges and return flows from irrigated agriculture 

(USEPA, 2011).” Examples of potential point source contaminants include underground 

storage tanks, septic tanks, animal feed lots, gas stations, dry cleaning operations, etc. 

Non-point sources are sources originating from large areas that include urban runoff and 

agricultural runoff from a farming community where fertilizers and pesticides have been 

used. 

In this research, potential sources of contamination (PCS), are any source that has 

the likelihood of discharging a contaminant to the environment.  These sources can be 

grouped by associated activities such as, commercial, industrial, agriculture, automotive, 

etc. (US EPA, 1997).  These categories have been listed from I through VI by the US 

EPA (US EPA, 1984).  These categories have been summarized, based on the USEPA 

guidelines, by the Nevada Division of Environmental Protection as follows: 

Category I – Sources designed to discharge substances to the environment 

including, subsurface percolation (septic tanks), injection wells, floor drains not 

connected to the sanitary sewer system, and land application. 

Category II – Sources designed to store, treat, and/or dispose of substances, with 

potential for discharge through unplanned releases (e.g. all types of landfills and disposal 

sites, surface impoundments, waste piles, non-waste stockpiles, above and below ground 

storage tanks, containers, graveyards, and animal burial). 
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Category III – Sources designed to retain substances during transport or 

transmission including pipelines, materials transport and transfer operations. 

Category IV – Sources discharging substances as a consequence of planned 

activities for example, agriculture practices irrigation, pesticide and fertilizer application, 

animal feeding operations, de-icing salts application, urban runoff, percolation of 

atmospheric pollutants, and surface or underground mining or mine drainage. 

Category V – Sources providing conduits for inducing discharge through altered 

flow patterns (e.g. all types of exploration, production and monitoring wells, and 

construction excavation). 

Category VI – Naturally occurring sources which discharge is created and/or 

exacerbated by human activity (e.g. natural leaching and interaction between ground and 

surface water). 

These categories illustrate the type of potential contaminant sources that may 

affect groundwater for public and private drinking water use (NDEP, 2007). 

Vulnerability to groundwater has been defined as “The tendency or likelihood for 

contaminants to reach a specified position in the groundwater system after introduction 

at some location above the uppermost aquifer (Carbonell, et al., 1993).”  It implies a 

level of vulnerability can be assessed for the water sources given contaminant source 

located near the well/spring.  With a determined level of vulnerability, decisions for 

treatment or permitting new wells can be addressed to help ensure the health of people 

reliant on the water source (Harman, et al., 2001). 



www.manaraa.com

21 
 

Assessments to determine the vulnerability level of possible contamination can be 

achieved several ways.  They include but not limited to; index methods, subjective hybrid 

methods, statistical methods, and process-based methods as outlined by the USGS 

(Focazio, et al., 2002).  This vulnerability assessment can assist with well head 

protection, water resource management, and location of new wells.  Each of the 

methodologies has strengths and weaknesses that should be realized prior to 

implementing of any of them (Focazio, et al., 2002).   For example, the application of a 

statistical method would not be viable if the region is lacking significant data for a 

statistical analysis. 

The index method is a method that uses a ranking for variables to determine an 

overall risk.  The most common index method is DRASTIC, developed by the US EPA 

(Aller, et al., 1987; Liggett & Allen, 2010).  This method is used often due to its relative 

simplicity of use, ease of data collection for evaluation, and the relatively accurate results 

obtained (Liggett & Allen, 2010; Babiker, et al., 2005).  However, the DRASTIC model 

can only be used for areas greater than 100 acres limiting this method to larger regions 

that may not suit a small community (Aller, et al., 1987). 

The hybrid method is subjective and assigns weights to different risk levels.  

Statistical analysis is preferred to determine a ranking of risk.  The combination of these 

techniques provides a more accurate model that can predict a rate of possible 

contamination from specific categories (Focazio, et al., 2002).  Because part of the 

method is based on a subjective modeling approach, there is an inherent issue with the 

accuracy of the risk ranking.  It may be too conservative or too liberal for the area of 

study (Carbonell, et al., 1993). 
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Statistical methods use correlations to determine a risk ranking for a region.  In 

this approach, existing groundwater quality data and land use are correlated to obtain 

vulnerability ranking.  This method is suitable for determining regions of risk over large 

areas and for preliminary modeling for more detailed models (Focazio, et al., 2002).  

However, this approach does not accurately account for geochemical or other factors that 

may alter the actual vulnerability ranking (Carbonell, et al., 1993).   

2.8 Natural and Anthropogenic Contaminants Detected in Northern Nevada Groundwater 

In Northern Nevada, the most common contaminants that have been detected in 

groundwater are naturally occurring arsenic, fluoride and radionuclides and 

anthropogenic nitrate.  Nitrate is often associated with septic tanks, manure spreading, 

and agriculture fertilizer application.  Nitrate concentration is typically highest for 

agricultural areas with minimal or no nitrate in wilderness regions  Nitrate is most 

commonly formed from the decay of ammonia associated with animals, such as feed lots 

or septic systems (Nolan & Hitt, 2006; Burow, et al., 2010).  However, nitrate can be 

found in wilderness areas from natural occurring deposits, such as found near Lovelock, 

Nevada (Gale, 1912).   However, natural occurrence of nitrate is very rare.  Additionally, 

nitrate has been determined to penetrate beyond the root zone in the region of central 

Nevada where condition of loamy soil allows for the migration to groundwater from the 

decay of plants (Nettleton & Peterson, 2011). 

Not all groundwater contamination comes from human activities.  Because of the 

type of ore deposits in Nevada, many naturally occurring contaminants are detected in the 

northern mining region, including radionuclides, arsenic, and fluoride. Arsenic is found 

throughout the United States in various quantities in groundwater from naturally 
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occurring deposits (Welch, et al., 2000).  The health effects of arsenic include 

discoloration of the skin, stomach pain, nausea, vomiting and has been linked to cancer 

(USEPA, 2010). Because of its proven health effects, the USEPA has lowered the 

maximum contaminant level of arsenic from 50 ppb (ug/L) to 10 ppb (ug/L) in 2006 

(Walker, et al., 2005).  Fluoride’s drinking water standard is 4 mg/L and its concern in 

drinking water relates to brittle bones.  Radionuclides, including uranium, alpha particles, 

gross beta particles, and combined radium 226/228 are regulated in drinking water 

because of their effects on tissues that may lead to cancer (USEPA, 2011).  

2.9 Factors Influencing the Vulnerability of Groundwater Wells to Contamination 

Well construction is important to minimize possible contamination to the 

groundwater source and maintain good water quality.  Many wells that have been drilled 

prior to regulations can inadvertently jeopardize the groundwater quality. Some of the 

issues that are known to influence the water quality are open joint cases, insufficient 

gravel pack, as well as the depth of the sanitary seal in relation to the well screen (Exner 

& Spalding, 1985).  This may result in nitrate contamination from nearby septic systems 

for regions with private wells (Verstraeten, et al., 2005).  Depth of the well is also an 

important aspect to water quality.  Shallow wells typically have a higher level of 

contaminants that infiltrate from the surface whereas deeper wells have minimal 

contaminants form surface activities (Nolan & Hitt, 2006).  Additional well 

characteristics that should be considered for potential of contamination assessment 

include draw down, radius of influence, recharge rate, withdraw rate, and the 

hydrogeology of the aquifer (Salvato, et al., 2003; Burton, 1983). 
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Hard rock mining utilizes explosive to excavate the ore.  Most explosive use a 

nitrate compound mixed with a volatile organic compound (VOC).  This mixture of 

chemicals has potential to be introduced into the environment from explosions that have 

not fully detonated.  This can lead to nitrates and VOCs infiltrating the groundwater 

(Ministry of Environment of British Columbia, 1983).  However, this is unlikely but 

possible in the mining operations in Nevada.  The infiltration would need to have large 

amounts of undetonated explosive left in the ground as well as a water table close to the 

surface. 
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CHAPTER 3 

RESEARCH APPROACH 

In this research, two index methodologies, the DRASTIC method and the NDEP 

method, will be used to assess the potential vulnerability to groundwater contamination in 

mining, associated mining towns, and agricultural areas.   A geographic information 

system (GIS) will be used to perform the analysis.  The DRASTIC method utilizes a 

range of regional hydrogeological aspects to forecast locations where groundwater 

contamination is more likely.  The NDEP method utilizes land use activities, also referred 

to as potential contaminant sources (PCSs), local hydrogeological aspects, historic 

groundwater quality, and the quality of well drilling and construction to estimate the 

vulnerability of the groundwater to contamination.  The comparison of the two 

methodologies will reinforce the potential of contamination to groundwater as well as the 

impact of the three land uses.  It is expected that groundwater located in mining towns 

and agricultural areas are as vulnerable to contamination as groundwater located in 

mining areas. 

The area of study is located on the Nevada State Engineer’s hydrographic basin 

boundaries for the northeastern portion of Nevada.  The area was chosen so to 

incorporate a region that contains enough of the three land use types and a reasonable 
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representation of each.  Figure 1 depicts the location of the study area in relation to the 

State of Nevada.  The hydrographic basins selected are shown in Table 2.  A graphic 

representation of the basins involved is depicted in Figure 2. 

Table 2 - Study Area Basins 

Nevada State Engineer's Hydrographic Basin Boundaries 

Antelope Valley Long Valley 
Big Smoky Valley Lower Reese River Valley 

Boulder Flat Maggie Creek Area 
Buffalo Valley Marys Creek Area 
Butte Valley Marys River Area 

Carico Lake Valley Middle Reese River Valley 
Clover Valley Newark Valley 
Clovers Area North Fork Area 

Crescent Valley Pine Valley 
Diamond Valley Pumpernickel Valley 

Dixie Creek-Tenmile Creek Area Rock Creek Valley 
Elko Segment Ruby Valley 

Goshute Valley South Fork Area 
Grass Valley Starr Valley Area 

Huntington Valley Steptoe Valley 
Independence Valley Stevens Basin 

Jakes Valley Susie Creek Area 
Kelley Creek Area Upper Reese River Valley 

Kobeh Valley Whirlwind Valley 
Lamoille Valley Willow Creek Valley 
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Figure 1 - Study Area:  The study area is located within the northeastern portion of 
Nevada and it was chosen to include three different land uses (mining, towns, and 
agriculture). 
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Figure 2 – Hydrographic Basin Boundaries:  Hydrographic basins determined to provide 
the best representation of the three land uses. 

DRASTIC METHOD 

The DRASTIC method was developed by the USEPA (Aller, et al., 1987) and this 

acronym relates to the seven  basin aspects  used for evaluation of vulnerability: (D) 

depth to water, (R) net recharge, (A) aquifer media, (S) soil media, (T) topography, (I) 

impact of vadose zone media, and (C) conductivity (Aller, et al., 1987).  Obtaining the 
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data needed for DRASTIC is relatively easy with today’s electronic availability of data 

sources from various agencies.  In DRASTIC, human activity can be incorporated using  

IMPACT, an acronym  for (I) inclination of the water table, (M) measured horizontal 

distance from the PCS to an arbitrary point, (P) population exposed to the potential 

contaminant, (A) application rate of the potential contaminant (C) contaminant 

concentration, and (T) contaminant toxicity.  These factors are applied to the DRASTIC 

model for a total rating of vulnerability. 

Without IMPACT, the vulnerability analysis is solely based on natural or existing 

conditions; that is, contaminant sources are not included. The IMPACT layer is applied to 

the DRASTIC model as an additional eighth data set.  However, the DRASTIC method 

does not dictate specific values for the aspect rating as well as a weight, therefore some 

professional judgment must be applied.  For the regional basins selected, some of the data 

needed to incorporate IMPACT to DRASTIC are very sparse or non-existing.  Therefore, 

IMPACT will not be considered in this research.    IMPACT has met some opposition on 

its validation of vulnerability.  This is mostly due to the lack of calibration for 

groundwater contaminant concentrations (Rupert M., 1997).  Utilizing a statistical 

correlation, a rating scheme can be applied to improve the performance of the model 

(Rupert, 1999).  For this improvement, additional data are required that may not be easily 

obtained.  Therefore, this research will focus on DRASTIC alone, without IMPACT.  

3.1 DRASTIC Data and Sources 

The data sets used in this research for the DRASTIC method were obtained 

through several open source data warehouses (Table 3).  In addition the data for mining 

district came from the Nevada Department of Geology and Mining, the data for populated 
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towns came from 2009 Tiger files, and irrigated lands came from the US Department of 

Agriculture for use in land use comparison. 

Table 3 – Data Sources Used in DRASTIC  

DRASTIC Feature Source

Depth of Water Static Groundwater Depths 
http://water.usgs.gov/lookup/getgislist

Net Recharge Estimated National Mean Recharge
http://water.usgs.gov/lookup/getgislist

Aquifer Media Hydrogeology of Nevada
http://water.usgs.gov/lookup/getgislist

Soil Media Soils Map of Nevada
http://data.geocomm.com/dem/demdownload.html 

Topography USGS NED 
http://seamless.usgs.gov/

Impact of Vadose Zone Geology Map of Nevada
http://tin.er.usgs.gov/geology/state/state.php?state=NV

Hydraulic Conductivity Hydrogeology of Nevada
http://water.usgs.gov/lookup/getgislist

All Data Collected on May 18, 2011 

The raw data collected to apply DRASTIC to the selected basins required some 

alteration to produce datasets that can be correlated mathematically in GIS.  The process 

involved:  (1) Assembling information relaying each of the aspects of DRASTIC into 

GIS file overlays, or layers, depicting the individual aspects.  Within each of the layers, a 

grid of cells with a cell size of 100 meters per side was created; (2) Numerically rating 

each cell based on its perceived threat to ground water contamination (Table 4); (3) 

Visually displaying the resulting ratings using GIS and colors representing a range of 

numerical values; (4) Overlaying or stacking each aspect layer with consideration to cell 

alignment and given respective weights. 

The DRASTIC method uses a mathematical formula to determine the 

groundwater vulnerability (equation 1).  This equation is a summation of weighted and 
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rated values for the seven layers used for the model.  Each layer is individually evaluated 

using a mapping technique.  For this research, ArcInfo version 9.3 has been utilized.  

After each of the layers were analyzed, they were overlaid onto one another to form 

numerical areas of vulnerability that can be displayed.  The vulnerability ranking is 

typically represented with light colors for low vulnerability and dark colors for high 

vulnerability. Last, the raster calculator in ArcInfo was used to create a DRASTIC layer 

with the results of the overlaid aspect layers.   

To compare the vulnerability for the different land uses, the final vulnerability 

layer, i.e. the DRASTIC layer, was used to create a map with the three land uses.  With 

the land use areas plotted, the map values can be used to determine percent of 

vulnerability ranking.   

The DRASTIC method uses two different weight values dependent on the 

expectation or presence of pesticide use (Table 4).  Once the assemblage of the seven 

layers is completed, using the associated weighted value, vulnerability is computed as: 

Vulnerability = DRDW+RRRW+ARAW+SRSW+TRTW+IRIW+CRCW    (Equation 1) 

Where R equals rate and W equals weight (Aller, et al., 1987; Rupert, 1999).   

Table 4 - Assigned Weights for DRASTIC and Pesticide DRASTIC Features 

Feature Weight Pesticide 
Weight 

Depth to Water 5 5 
Net Recharge 4 4 
Aquifer Media 3 3 
Soil Media 2 5 
Topography 1 3 
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Feature Weight Pesticide 
Weight 

Impact to the Vadose Zone Media 5 4 
Hydraulic Conductivity of the Aquifer 3 2 

Reproduced From Table 3 (Aller, Bennett, Lehr, & Hackett, 1987) 
 

For the region studied in Nevada, the rating values for the individual layers are 

depicted below in Tables 5 to11 for aspects of the DRASTIC method suggested by the 

USEPA (Aller, et al., 1987). 

Table 5 - Ranges and Ratings for Depth to Water 

Depth to Water (feet)

Range Rating

0-5 10
5-15 9

15-30 7
30-50 5
50-75 3
75-100 2

100+ 1

Reproduced From Table 4 (Aller, et al., 1987)
 

Table 6 - Ranges and Ratings for Net Recharge 

Net Recharge (inches) 

Range Rating

0-2 1
2-4 3
4-7 6

7-10 8

10+ 9

Reproduced From Table 5 (Aller, et al., 1987)
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Table 7 - Ranges and Ratings for Aquifer Media 

Aquifer Media 

Feature Rating
Typical 
Rating 

Massive Shale 1-3 2 
Metamorphic/Igneous 2-5 3 
Weathered Metamorphic/Igneous 3-5 4 
Glacial Till 4-6 5 

Bedded Sandstone, Limestone, and Shale 
Sequences 

5-9 6 

Massive Sandstone 4-9 6 
Massive Limestone 4-9 6 
Sand and Gravel 4-9 8 
Basalt 2-10 9 

Karst Limestone 9-10 10 

Reproduced From Table 6 (Aller, et al., 1987)
 

 

Table 8 - Ranges and Ratings for Soil Media 

Soil Media 

Feature Rating 

Thin or Absent 10 
Gravel 10 
Sand 9
Peat 8
Shrinking and/or Aggregated Clay 7
Sandy Loam 6
Loam 5
Silty Loam 4
Clay Loam 3
Muck 2

Nonshrinking and Nonaggregated Clay 1

Reproduced From Table 7 (Aller, et al., 1987)
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Table 9 - Ranges and Ratings for Topography 

Topography (Percent Slope) 

Range Rating 

0-2 10
2-6 9

6-12 5
12-18 3

18+ 1

Reproduced From Table 8 (Aller, et al., 1987)
 

 

Table 10 - Ranges and Ratings for Impact of Vadose Zone Media 

Impact of Vadose Zone 

Feature Rating
Typical 
Rating 

Confining Layer 1 1 
Silt/Clay 2-6 3 
Shale 2-5 3 
Limestone 2-7 6 
Sandstone 4-8 6 
Bedded Limestone, Sandstone, Shale 4-8 6 

Sand and Gravel with significant Silt and 
Clay 

4-8 6 

Metamorphic/Igneous 2-8 4 
Sand and Gravel  6-9 8 
Basalt 2-10 9 

Karst Limestone 8-10 10 

Reproduced From Table 9 (Aller, et al., 1987)
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Table 11 - Ranges and Ratings for Hydraulic Conductivity of the Aquifer 

Hydraulic Conductivity (gpd/ft2) 

Range Rating 

1-100 1
100-300 2
300-700 4
700-1000 6
1000-2000 8

2000+ 10

Reproduced From Table 10 (Aller, et al.1987)
 

An evaluation of the tables above indicates that, higher vulnerability to 

contamination is associated with shallow groundwater table, high recharge rate aquifers, 

aquifers associated with limestone and gravel, steep slopes, and high hydraulic 

conductivity. 

3.2 DRASTIC Data Reevaluation 

DRASTIC requires seven layers to be used in the calculation of vulnerability.  

The seven layers include:  depth to water, recharge, aquifer media, soil media, 

topography, impact of vadose zone, and hydraulic conductivity.  The raw data sets 

collected required some manipulation.  Manipulation included reclassification, re-

projection, re-sampling, and format conversion. 

 All seven data sets collected required reclassification and re-projection.  

Reclassification is assigning a numeric value to an aspect of the data sets, e.g., 0 to 2 

percent slope receives a weight equal to 10.   The data sets were projected to be in the 

North American Datum 1983, Universal Transverse Mercator Zone 11 projection 

[NAD83, UTM11].  This projection ensures that all the grids will align properly for 



www.manaraa.com

36 
 

future calculations.  This projection was chosen because it is the standard projection for 

Nevada.  Three of the data sets, recharge, topography, and depth to water, required re-

sampling to produce data sets with equal grid size.  Re-classification is converting larger 

or smaller grid sizes to a common size, i.e. 100 m for this analysis.  The topography layer 

was collected at 10 meter resolution cell size and converted to 100 meter cell size for 

easier control of the data and minimizing calculation times.  The other two grid files had 

to be converted to 100 meter cell size, down from 300 meter for the depth to water and 

from 1000 meter for the water recharge data layer.  Using the topography as a base, or 

“snap to” layer, the layers were converted to be aligned with this layer. 

 The data sets of aquifer media, soil media, impact of vadose zone, and 

hydraulic conductivity were collected in the ESRI shapefile format.   A value for each 

aspect was assigned based on the DRASTIC rating values.  Once the rating 

(reclassification) was established, the data layers were converted to a grid file with the 

same dimensions and location of cells as the topography layer.  This is essential for the 

calculation of the vulnerability in GIS to ensure the correct values are being used.  

Otherwise, with runoff of cell locations, it is possible for the program to calculate 

adjacent cells creating erroneous values. 

 Values for the DRASTIC layers, for use in this assessment, have been 

determined using the values as outlined in the DRASTIC methodology (Tables 5 to 11), 

However, several data sources, including aquifer media and impact of vadose zone 

values, were presented with different aspects and required some interpretation.  The 

interpreted values for the data layers are outlined in Tables A1 and A2 (Appendix A).  

The values from Table A2 have been developed from the Nevada Geology data provided 
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by the United States Geological Survey (USGS; http://www.epa.gov/nerlesd1/land-

sci/nv_geospatial/pages/nvgeo_gis4_geology_md.htm#5).  These values were related to 

the DRASTIC rating scheme as a relationship between geologic rock formation and the 

rock types from DRASTIC (Table 10).  This method was used to provide a better 

representation of the vadose zone in comparison to the data offered in the soils data from 

the United States Department of Agriculture (USDA) NRC soil reports 

(http://www.nv.nrcs.usda.gov/technical/soils.html). 

NDEP METHOD 

The NDEP method utilizes an index method to determine groundwater 

vulnerability by identifying potential contaminant sources (PCS) within an influence area 

and incorporating hydrogeological, water quality, and well construction features to the 

respective groundwater sources (e.g. wells and springs).  Features considered include 

aquifer type, confining layer depth, well construction, depth of water table, and historic 

water quality.  In applying the NDEP method, the following steps are needed: (1) 

Determining the influence area (buffer zone) around the well by either hydrogeologic 

modeling or using a fixed radius.  For this research, a fixed radius is used.  The region 

located within the fixed radius is the influence area, within which any potential source of 

contamination is likely to affect the vulnerability level; (2) Assigning an initial rating of 

high, medium or low vulnerability based on the type of contaminant likely to be 

associated with specific potential contaminant sources. The general contaminant 

categories include inorganic compounds (IOCs), volatile organic compounds (VOCs), 
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synthetic organic compounds (SOC), radionuclides (RAD), and microbiological 

contaminants (MIC); (3) Assessing final vulnerability by taking into consideration 

hydrogeological, water quality, and well construction features that would warrant 

lowering or maintaining the initial assigned vulnerability.  It includes consideration of 

depth of water table, presence of a confining layer, sanitary seal depth, historic water 

quality of the well, and other aspects. 

In this research, a fixed radius or buffer of 3,000 feet was placed around the water 

source to evaluate the type and amount of potential sources of contamination that may 

impact the groundwater.  This buffer zone was determined by reviewing typical aquifer 

transmissivity as outlined by the Nevada Division of Environmental Protection (NDEP).  

Nevada is predominately an alluvium aquifer with a media of unconsolidated sand and 

gravel mixture with areas of carbonate rock (NDEP, 2006).  A fixed radius of 3,000 ft 

corresponds to travel times of 10 years for most groundwater aquifers in Nevada.  

Therefore, the NDEP method utilized this geologic feature for a simplistic 

hydrogeological condition to determine the radius of potential travel times of 

contaminants. 

3.1 NDEP Method - Contaminant Source Data Gathering and Initial Ranking 

Data collection involved GPS location of potential contaminant sources within the 

established 3,000 foot buffer zone for selected wells in the study area.  The data 

collection campaign took place in the summer of 2010.  Additional information was 

gathered from the Nevada Division of Water Resources and Nevada Division of Water 

Quality (http://water.nv.gov/) throughout the year of 2010 and the early portion of 2011.  

In addition, mapping data such as USGS quadrangle maps and USGS orthographic 
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photographs were utilized to assist with PCS locations and other pertinent features such 

as direction of slope and the presence of seasonal water bodies. 

Potential contaminant sources were surveyed in the field using a GPS handheld 

device, (Trimble unit Geo Explorer 2004).  These data were converted to an ESRI 

shapefile format compatible with the ArcInfo program and plotted as a map.  The data 

was then used to determine location of any PCS relevant to the water sources as well as 

the lateral distance to the water sources.   

Utilizing the NDEP category rating index (Table A3, Appendix A), an initial 

value of vulnerability was assigned for the potential contaminant source.  These 

categories are defined by expected contaminant type with an associated ranking of 

contamination potential from low, medium, or high.  The contaminant categories include 

inorganic compounds (IOC), volatile organic compounds (VOC), synthetic organic 

compounds (SOC), microbiological compounds (TBC), and radionuclide compounds 

(RAD). This ranking provides the initial vulnerability for the water source in relation to a 

single contaminant source.  For example, wells/springs located in the proximity of gas 

stations have a high likelihood to be contaminated by VOCs, while wells located close to 

a feedlot have a high risk of being contaminated by microbiological compounds. 

Often, within the 3,000 ft fixed radius several contaminant sources are present 

that make the well vulnerable to contamination, as illustrated in Figure 3. 



www.manaraa.com

40 
 

Figure 3 – Well with Multiple PCSs:  This is an example of a well with multiple PCSs 
with different ranges of initial vulnerability ranking. 
 

Therefore, it is necessary to devise a means by which the vulnerability of the well with 

respect to all contaminant sources present is computed.  By using values associated to the 

level of vulnerability a mean ranking of initial vulnerability can be assessed for multiple 

PCSs within the buffer zone of the well.   

In order to assign a quantitative value to the vulnerability and to account for the 

vulnerability to many contaminant sources,  the values of 100 for low, 200 for moderate, 

and 300 for high have been assigned in this research.  With these established values, the 

initial overall vulnerability of the well will be computed as follows:  

VPCS initial =	
	ሺୌଵାୌଶା⋯ାୌ୬ሻ


   (Equation 2) 

 



www.manaraa.com

41 
 

Where: 

PCSn = Initial potential contaminant source vulnerability ranking (100, 200, or 300) 

n = total number of PCSs 

As an example, if a well has three PCS located within the 3,000 ft buffer zone and 

one is rated as low, and two are rated as moderate, the assigned initial vulnerability 

ranking would be: 

VPCS initial = 		ሺଵାଶାଶሻ
ଷ

 = 166.67 

3.2 NDEP Method – Well and PCS Data Gathering 

These data were collected concurrently with the PCS data using the same 

methodology and GPS unit.  Well information was compiled from the Nevada Division 

of Water Resources webpage (http://water.nv.gov/data/welllog/) that included the well 

driller’s log.  The well locations collected were used to create the 3,000 foot buffer.  

Once the buffer zone was created the well locations were removed from the map, for 

security reasons (NDRW, 2011). 

Review of the well driller’s log revealed the static water level, the presence or 

absence of a confining layer, sanitary seal depth, screen depth, and well depth.  The 

physical inspection of the well during field visit noted casing above ground height, 

visible construction defects, and local features that may jeopardize the integrity of the 

well.  These factors were weighted on significance to the possible well vulnerability 

using professional judgment guided by principles of contaminant transport (Section 3.5).  
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However, no contaminant transport modeling was performed in this research. Therefore, 

this process has some inherent subjectivity. 

3.3 NDEP Method - Historic Water Quality Data 

Historic water quality from each of the water sources was collected from NDEP 

via the SDWS data system.  SDWS is the NDEP data storage and retrieval system that 

houses water quality information for each public water system in the state of Nevada.  

The information on SDWS contains water quality data that is submitted to NDEP 

annually by the well owner to assure the water meets the maximum contaminant levels 

(MCL) for primary and secondary water contaminants (Table A11 - Appendix A).  In this 

research, the initial vulnerability ranking was increased based on how closely specific 

contaminants, found in the well, are from the MCL.  For an example, a system that has 

reported a constituent near the current MCL as established by the USEPA’s Safe 

Drinking Act will receive a higher ranking than a system without contaminant detection.   

3.5 NDEP Modified Method - Final Vulnerability Ranking 

In this research, the final ranking is based on the initial vulnerability ranking, 

modified by historic water quality, hydrogeologic features, and well construction.  Each 

of the three categories contributes to the overall vulnerability of groundwater.  Water 

quality indicates if prior contamination has occurred or the presence of naturally 

occurring contaminants (e.g. arsenic, radionuclides) that impact the vulnerability of the 

groundwater.  Well construction can allow the migration of contaminants to occur if, for 

example, no or insufficiently deep sanitary seal is present.  Hydrogeology is used to 

determine the ease of migration of a contaminant due to, for example, lack of a confining 

layer or shallow ground water depth. 
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 The final ranking consists of modifying the initial ranking by assigning a 

significance factor for each of the vulnerability modifying parameters.  In this research, 

significance factors of 5, 3, and 2, were assigned to hydrogeological, water quality, and 

well construction, respectively. This rating was given because hydrogeology will, often, 

control contaminant migration more than well construction or historic water quality. 

Next, ratings are given to the different water quality parameters, well construction 

features, and hydrogeological factors (Table 12).  The values of the ratings are subjective, 

but the relationship among them represents expected behavior of the parameters when 

evaluating contamination transport.  For example, for water quality, a rating of 4 is given 

to wells in which the contaminant has reached the MCL, while a lower rating of 1 is 

given to wells where the contaminant level is < 25% of the MCL.  For water quality, in 

addition to rating, a weight was given for the presence and absence of specific 

contaminants; a weight of 10 is given when the contaminant is present and a weight of 

zero is given when it is absent.  Historic water quality values have been rated at 10 for all 

constituents due to drinkability, or lack of it, if the water is contaminated by any of them.  

If a PCS is located up gradient (upstream) of a well it will pose a greater threat than a 

PCS located down gradient of the well if contamination were to occur.  Other 

hydrogeological aspects include the presence of a confining layer and contaminant 

mobility.  Tables 12 and 13 depict the numerical significance factors, weight and rating 

values for the three modifying categories and features. 
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Table 12 – NDEP Method: Historic Water Quality Rating Values 

Weight = 3 

Water Quality Constituent Rating 

Absent of (no)Detection  0 
VOC Detect:       10 
Dioxin Detect: 10 
SOC Detect: 10 
IOC Detection: 10 
Radionuclide Detect: 10 
E Coli Detect: 10 
Total Coliform MCL  within 2 yrs: 10 
Nitrate Detect: 10 

 

Table 13 – NDEP Method: Historic Water Quality Detection Weights 

Contaminant Detections weights 

0-25% MCL 1 
25-50% MCL 2 
50-75% MCL 3 
75-100% MCL 4 
>100% MCL 5 

 

Table 14 – NDEP Method: Well/Spring Construction Rating Values 

Weight = 2 

Well/Spring Construction Rating 

Adequate Construction?:   
Yes 2 
No 7 
Seal Depth:   
0-25 9 
25-50 7 
50-75 4 
>75 1 
Casing > 18" Above Ground?:   
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Weight = 2 

Well/Spring Construction Rating 

Yes 2 
No 7 
Screen Below Confining 
Layer(s)?:   
Yes 2 
No 7 

 

Table 15 – NDEP Modified:  Hydrogeological Factor Rating 

Weight = 5 

Hydrogeological Factors Rating  Hydrogeological Factors Rating
Contaminant Source 
Dir.:    Confining Layer(s)?  

Up Gradient 7 Yes 2
Down Gradient 2 No 7

Time of Transport:    Is Contaminant Mobile?:  
2 year (<1000ft) 10 Yes 7
5 year (1000-2000ft) 8 No 2
10 year (2000-3000ft) 6 Is The Contaminant Persistent?:  

20 year (3000-4000ft) 4 Yes 9

>20 year (>4000ft) 2 No 4

Static Water Depth (ft):    Have Contaminations occurred?:  
0-5ft 10 Yes 7
5-15ft 9 No 2

15-30ft 7
Approved Method to Control 
Contamination?:  

30-50ft 5 Yes 1

50-75ft 3 No 6

75-100ft 2    
>100ft 1   

 

Once the modifying factors and their respective weights and ratings are applied, 

the new vulnerability of the well, in relation to each contaminant source, can be 

computed using Equations 3 and 4. Equation 3 will determines a vulnerability correction 
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factor of the well without considering associated PCS(s). By applying Equations 2 and 3 

to Equation 4, the final vulnerability of the well to contamination can be determined. 

VCFwell= 
ୗ୕ሾ∑ሺେ∗ୖ୕ሻሿ	ା	ୗ୦୷ୢ୰୭ሾ∑ୖୌ୷ୢ୰୭ሿ	ା	ୗୡ୭୬ୱ୲	ሾ∑ୖେ୭୬ୱ୲ሿ

ହ
  (Equation 3) 

The vulnerability of the well to all contaminant sources can then be computed as: 

VFinal = VPCS inital * VCFwell       (Equation 4) 

Where:  

 VCFwell = Vulnerability correction factor for the well/spring 

 SFWQ = Significance factor for historic water quality 

 WMCL = Weight for water quality concentration based on MCL level 

 RWQ = Rating of water quality constituent 

 SFhydro = Significance factor for hydrogeologic component 

RHydro = Rating of hydrogeologic features 

SFconst = Significance factor for well construction 

RConst = Rating of well construction features 

VFinal = Final Vulnerability 

VPCS inital = Initial vulnerability of PCS ranking from Equation 2 

The factors used to determine the initial and final ranking are similar to those used 

for DRASTIC and involves some subjectivity.  As long as the same methodology is 
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applied to all the wells, the subjectivity of the values should have limited impact to the 

overall vulnerability to the well (Focazio, et al., 2002).  The division of 500 was used in 

equation 3 to produce a distribution whereas the majority of vulnerability resides within 

moderate low to moderate high.  Other values were analyzed including 300 and 1,000.  

These values produced a distribution that was either almost entirely in the very low to 

moderate or high to very high.  Therefore value of 500 has been determined to be the 

most suitable.  Table 16 displays the vulnerability levels associated with values assigned 

to the different ranking values. 

Table 16 – NDEP Modified Method Vulnerability Ranking Values 

NDEP Modified Method Ranking Index

NDEP Value Vulnerability

<=50 Very Low

51‐100 Low

101‐150  Moderate Low

151‐200 Moderate  

201‐250 Moderate High

251‐300 High

>300 Very High

 

3.6 DRASTIC and NDEP Method Comparison and Correlation 

The DRASTIC and NDEP methods were correlated with several detected 

contaminants in wells of Northern Nevada.  It was expected that no strong correlation 

exists between the vulnerability rankings and naturally occurring contaminants because 

their presence is independent of contaminant transport.  Strong correlation is expected 

between anthropogenic contaminants (i.e. nitrate) and the determined vulnerability.  For 

mining, a low correlation is expected because mining areas have low number of septic 
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tanks.  A high correlation is expected for agriculture and towns because a large number of 

septic tanks and agricultural activities are present. 

The correlation was based on the frequency of contamination for arsenic, fluoride, 

and radionuclide, and nitrate (Kalinski, et al., 1994).  The contaminants were plotted as 

frequency versus vulnerability with the entire data sets.  Nitrate was plotted in the same 

fashion, except that the data sets were separated into the three land uses.  From the plots, 

a correlation can be established. The NDEP method requires a transformation from points 

to a raster (grid) for comparison to the DRASTIC method. Two methods were tested to 

convert the NDEP method points to an area map, Kriging and triangulation.  Once the 

raster had been prepared the correlation of contaminants were plotted for both the 

DRASTIC and the NDEP methods. The correlation coefficients of both DRASTIC and 

NDEP were compared to determine which method correlates best to the water quality 

data and the expected outcome. 
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CHAPTER 4 

RESULTS 

The vulnerability results for the two methodologies studied have been presented 

in a percent occurrence format.  The DRASTIC method was analyzed by the raster cell 

value that occur within each of the defined land use areas to find the percent vulnerability 

for each ranking.  This represents the natural condition of vulnerability based on geologic 

and hydrogeologic conditions.  The NDEP modified method was analyzed based on 

PCSs, well construction data, hydrogeologic features, water quality, and land use.  The 

wells were analyzed for vulnerability by determining the frequency of occurrence per 

ranking level associated with the three land uses.  The wells, which in GIS constitute 

(points), were transformed into a raster (grid) via triangulated irregular network (TIN) for 

a direct comparison with DRASTIC.  Kriging and Inverse Distance Weighted methods 

were considered but found to be inadequate based on an analysis of the data and the 

variogram.  The Inverse Distance Weighted method results eliminated all data of the very 

low, low, high and very high ranges.  The resulting vulnerability map when the data was 

removed provided a vulnerability map that shows little distinction of the land uses.  The 

Kriging method was not used because of the high variability of the resulting variogram. 
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4.1 DRASTIC Method 

Each of the seven elements required to make up the DRASTIC vulnerability map 

were analyzed and plotted in ArcMap.  The numeric rating values from the DRASTIC 

tables were color coded for visual reference.  Figures 4 to 10 depict the resulting layers 

used for this analysis.  The figures have been placed in order of the acronym DRASTIC.  

In the Figures, the greater the numeric values the greater the vulnerability aspect. 

When the DRASTIC equation (Eqn. 1) is applied to the study area, a groundwater 

vulnerability map is obtained from the seven data input layers (Figure 11).  The layer cell 

addition resulted in a rating of 47 to 187; these values were then categorized into a 

vulnerability rating of 1 through 7, with 1 and 7 representing the lowest and the highest 

vulnerability respectfully.  In the vulnerability map, light colors represent areas of low 

vulnerability and dark colors represent areas of high vulnerability. 

Analysis of the DRASTIC aspects of the studied area revealed that the 

mountainous region is comprised of carbonate and other rocks, has seasonal (non-

primary) aquifers, and recharge of 2 inches per year or greater (Figures 4, 5, and 6).  The 

valleys are comprised of sand and gravel, primary aquifers, and recharge of less than 2 

inches per year.  The mountainous regions also are comprised of loam soils and carbonate 

rock in the vadose zone (Figures 7 and 9).  The valleys are comprised of slopes less than 

2% whereas the mountainous regions have slopes 12% and greater (Figure 8).  Hydraulic 

conductivity is less than 100 gallons per day per square foot for the mountainous regions 

and over 300 gallons per day per square foot for the valleys (Figure 10). 
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Figure 4 – DRASTIC- Depth to Water Ratings:  Areas of 0 indicate the areas of non-
primary aquifers of seasonal aquifers.  The values from 1 through 10 represent the depth 
of the aquifer measured in feet from the ground level. 

Depth to water layer in the region was assumed to correspond to the depth of the 

static water table.  The areas with 0 values are areas with no data, meaning that these 

regions are not primary aquifers or are aquifers without any associated data for 

verification. 
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Figure 5 – DRASTIC Recharge Ratings:  Showing that most areas included in the study 
have recharge rates < 2 inches/year, except in north, southwest, and east where recharges 
are 2 to 10 inches for the north and the southeastern, 2 to 7 inches for the southwestern, 
and 2 to 4 inches for the eastern areas. 

 
Recharge values for the study area are predominantly 2 inches or less for the 

entire study area with the exception of four small regions located in the north, east, 

southeast, and southwest where the recharge has been determined to be greater than 2 
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inches per year.  Recharge is based on natural rainfall and not on artificial recharge such 

as irrigation. 

 
 

Figure 6 – Aquifer Media Ratings:  Other rock and carbonate rock are predominately 
located in the mountain ranges and sand gravel mixture is located in the valleys.  This can 
be seen with the overlap of the topography (not displayed). 

 
When the aquifer media map is compared with the topography map, the regions of 

sand and gravel are within the valleys and carbonate rock and other rock are in the 
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mountain ranges.  Sand and gravel have a greater infiltration rate than rock formations 

giving it a higher value than carbonate rock, which has moderate infiltration rate. 

 
 

Figure 7 – Soil Media Ratings:  Sandy loam and loam are the predominant soils types on 
the eastern portion of the study area and silty loam and aggregated clay is the 
predominant soil type to the west with clay loam in the south. 

Soil media ratings were based on the ease of infiltration with a high value for high 

infiltration and low runoff rates as well as low values for low infiltration rates and high 
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runoff.  The lower values indicate a higher runoff rate.  Sandy loam is found mostly in 

the valley regions and loam soils are found in the mountain ranges. 

 

Figure 8 – Topography Slope Ratings:  Areas with slopes greater than 18% indicate the 
predominant mountain ranges.  Slopes less than 2% indicate the valleys.  
 

The percent slope of the topography was calculated from the change in elevation 

as ft/ft and transformed to a percentage.  The mountain ranges have a high slope 

percentage with a low rating value and the valleys have a low slope percentage with a 
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high rating value.  This means, the higher the rating value the lower the runoff velocity 

which would allow for greater infiltration to occur. 

 

Figure 9 – Impact of Vadose Zone Ratings:  Sand and gravel mixtures are shown to be 
predominantly in the valleys and silt/clay and alluvium tend to be in the mountain ranges. 

The rating values of the vadose zone indicate that greater values result in a greater 

infiltration rate through the strata.  Sand and gravel as well as basalts have high 

infiltration where as other strata types have lower infiltration rates.  If contamination 
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were to occur, the higher rating values would allow the transport of the contaminants at a 

faster rate than with a low rating value. 

 

 

Figure 10 – Hydraulic Conductivity Ratings:  Hydraulic conductivity of 300 to 700 
gpd/sqft is located within the valleys and the hydraulic conductivity of less than 100 
gpd/sqft is located in the mountain ranges. 

Hydraulic conductivity rating values indicate that, when compared to the 

topography map, higher conductivity occurs in the valley floors than it does in the 
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mountainous regions.  The higher the rating value the faster a contaminant can travel 

through the media than through a region with a low rating. 

The previously described aspect layers were assembled and Equation 1 was 

applied to determine the vulnerability for the study area.  The calculated values were 

from a low of 46 to a high of 187.  From these values a vulnerability rating can be applied 

using Table 17.  Values found in the range of 0 to 79 were assigned a new value of 1 (-

this is referred to as reclassification-); calculated values in the range of 80 to 99 were 

reclassified with a value of 2 and so on, up the value of 7 which  represents extreme 

vulnerability to contamination. 

Table 17 – DRASTIC Method – Rating Index Values 

DRASTIC Rating Index

Rating  DRASTIC Value Vulnerability

1  <79 Very Low

2  80‐99 Low

3  100‐119 Moderate Low

4  120‐139 Moderate  

5  140‐159 Moderate High

6  160‐179 High

7  180‐199 Very High

 

From the reclassified values a map can be assembled using a visual code to depict 

the different values.  Figure 11 displays the results of the vulnerability calculation with 

associated colors for the vulnerability ratings.  Comparing with the individual layer maps, 

in general, the vulnerability areas appear to be high in the valley floors and low in the 

mountain ranges.  Values of very low and low vulnerability are predominantly in the 

mountain ranges where topography, soil media, aquifer media, and impact of vadose have 
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low to moderate ratings are found in the mountain ranges whereas high rating are found 

in the valleys. 

 

Figure 11 – DRASTIC - Vulnerability Ratings:  When compared with the topography, 
high vulnerability is predominantly located in the valleys and low vulnerability is located 
in the mountain ranges. 
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4.2 DRASTIC Method Sensitivity Analysis 

Several studies have addressed the reliability of DRASTIC and the subjectivity of 

the rating obtained (Barbash & Resek, 1996; Koterba, et al., 1993; Rupert M., 1997; 

USEPA, 1993).  One of the criticisms of DRASTIC is that some variables used in the 

mapping may not be needed for determining vulnerability.  In this research, sensitivity 

analysis was performed for the DRASTIC map obtained. Two types of sensitivity 

analyses have been employed:  (a) the map removal sensitivity analysis and (b) the single 

parameter sensitivity analysis (Lodwick, et al., 1990; Napolitano & Fabbri, 1996).  The 

map removal sensitivity analysis uses a method of removing one or more layers of a map 

to determine the significance of the removed layer(s) (Lodwick, et al., 1990).  The single 

parameter sensitivity analysis determines a “theoretical” weight for each of the seven 

layers which are compared with the “effective” (actual) weight that was used in the 

vulnerability parameters (Napolitano & Fabbri, 1996).   

 The map removal sensitivity analysis involved removing one layer at a time to 

determine the effects of that layer on the initially calculated vulnerability.  The removal 

was performed in order of the acronym of DRASTIC and is displayed in Table 18.  Each 

letter indicates the layer removed for the analysis.  By comparing the means of the initial 

vulnerability map, an evaluation can be performed about the significance of the layers.  A 

comparison of the mean values reveal that the layers of (D) depth to water, (R) recharge, 

and (C) hydraulic conductivity have low impact on the vulnerability map built.  This was 

determined by comparing the values of mean (107.10, 108.64, and 107.10) with the mean 

of the initial vulnerability map of 112.96.  The vadose zone layer was found to be the 

most significant for the map, based on 112.96-83.47=29.49, producing the greatest value.  
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Aquifer media, topography, and soil media are the next most significant layers, while the 

least significant layers are found to be depth to water, recharge, and hydraulic 

conductivity. 

Table 18 – DRASTIC Method Map Removal Sensitivity Analysis Results 

Layer Weight std Mean Sensitivity min max 

D 5 30.57 107.10 5.86 44.00 179.00 
R 4 32.77 108.64 4.32 42.00 183.00 
A 3 28.59 93.48 19.48 34.00 163.00 
S 5 31.64 85.87 27.09 21.00 152.00 
T 3 24.00 94.23 18.73 43.00 157.00 
I 4 28.67 83.47 29.49 36.00 151.00 
C 2 30.57 107.10 5.86 44.00 179.00 

ASTI Vuln. N/A 22.83 84.69 28.27 40.00 125.00 
 Vuln. N/A 32.47 112.96 N/A 46.00 187.00 

 

The DRASTIC vulnerability map was recalculated by removing the three less 

significant data sets of depth to water, recharge, and hydraulic conductivity. With the 

removal of the three least significant layer, a smaller range of values, a smaller standard 

deviation and a smaller mean were found (ASTI Vuln.).  When compared to the 

vulnerability map results (Vuln.) the sensitivity value is 28.27 confirming the four layers 

are the most significant.  Additionally, the range decreased resulting in a decrease of 

degrees of vulnerability for the map.  A reclassification would be needed to reestablish 

the proper degrees of vulnerability.  A figure has been plotted (Figure 12) with just the 

four significant layers for a visual reference. 
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Figure 12 –ASTI - Vulnerability Ratings:  When depth to water, recharge, and hydraulic 
conductivity are removed, the resultant map indicates similar regions of vulnerability. 

 

 The single parameter sensitivity method uses equation 5 to determine the 

theoretical weight for comparison to the effective weight used in the vulnerability map 

computation.   

Wpi = 


୳୪୬
100    (Equation 5) 

Where  

Wpi = Theoretical Weight (Avg. %Weight) 

PRi = Layer Rating Value (e.g. 1 – 10) 

PWi = Layer effective Weight (weight used in the model of 1 – 5) 
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Vulni = Calculated Vulnerability result for DRASTIC 

By applying the equation in the raster calculation feature of ArcInfo, statistical elements 

can be determined.  Table 19 is a summary of these results for each of the seven layers 

indicated by the representative letter on the left column.  Comparing average percent 

weight (Avg. %Weight) and effective percent weight (%Weight) a determination can be 

made about the effectiveness of the layers.  The layers of depth to water, recharge, and 

hydraulic conductivity are less significant than aquifer media, soil media, topography, 

and impact of vadose zone.  Impact of vadose zone is the most effective layer for this 

model indicated by 25.10-15.38=9.72 resulting in the largest value.  The next most 

effective layer is aquifer media with a result of 5.04 followed by topography and soil 

media. 

 Table 19 – DRASTIC Method Single Parameter Sensitivity Analysis Results 

Layer Weight %Weight Avg. %Weight std Mean min max 

D 5 19.23 6.81 9.36 5.06 0.00 46.30
R 4 15.38 3.68 2.73 4.23 2.14 35.56
A 3 11.54 16.58 3.76 17.59 7.10 37.50
S 5 19.23 23.07 7.78 25.77 0.00 54.35
T 3 11.54 15.94 7.28 15.35 1.88 40.00
I 4 15.38 25.10 6.96 26.93 0.00 50.00
C 2 7.69 4.99 2.01 5.06 1.18 12.50

 

 Both sensitivity analysis methods indicated that impact of vadose zone, soil 

media, aquifer media, and topography are the most significant layers.  Depth to water, 

recharge, and hydraulic conductivity have been found to be less significant based on the 

two sensitivity analyses.  These results also explain why in the region, the areas of high 
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vulnerability are located in the valleys while the areas of low vulnerability are located in 

the mountain ranges. 

The importance of grid size on the results of DRASTIC was evaluated by 

recalculating the vulnerability rankings with a 500 meter cell size instead of the 100 

meter previously used. The 100 meter cell size was selected to allow for a comparison 

with the NDEP method, where contaminant sources within a 1000 ft radius are 

considered. When a 500 meter cell grid size was used, the values of vulnerability 

obtained were very similar to those found when a 100 meter grid was established.  

Therefore, the use of 100 meter cell size is adequate for this map.  The difference appears 

to be that the 100 meter cell size has a slightly better standard deviation than the 500 

meter cell size map. 

Table 20 – DRASTIC Cell Size Comparison 

Mean STD Min Max 

100 meter 112.69 32.47 46 187 
500 meter 117.03 38.42 46 187 

 

4.3 DRASTIC Method Land Use Comparison 

A comparison between the three land uses has been prepared using a percent 

occurrence based in the defined regions.  This was accomplished by tallying the values of 

the 7 levels of vulnerability to determine the percent of values that occur within each of 

the defined regions.  The results are shown in Table 21 and in the accompanying graph 

(Figure 16).  The graph has been displayed with the three land uses side by side per value 

of vulnerability.   
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Figures 13 to 15 show the vulnerability map reproduced from Figure 11. 

According to the DRASTIC vulnerability map and from visual reference, a generalization 

can be made that mining is located in regions with low vulnerability and irrigated lands 

and towns are located in areas of high vulnerability.  Additional analysis, using actual 

contamination data will be needed to determine if the visual generalization is valid. 

Table 21 summarizes the results of percent occurrence for each of the seven 

layers of vulnerability as well as each of the three land uses.  As expected from the visual 

generalization, mining is predominately located in regions of very low (36.46%) and low 

(32.99%) vulnerability.  In addition, towns and agriculture are located in regions of 

moderate to high vulnerability. 

 

Figure 13 – DRASTIC Vulnerability MAP with Mining Activities 

 
 



www.manaraa.com

66 
 

 
 
Figure 14 – DRASTIC Vulnerability MAP with Towns 
 

 

Figure 15 – DRASTIC Vulnerability with Agricultural Activities 
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Figure 13 through 15 depict the vulnerability results from DRASTIC with the 

three land uses, one for each map.   The regions of the three land uses indicate their 

locations in relation to the vulnerability.  Mining tends to be located in regions with less 

vulnerability, agriculture tends to be in regions with high vulnerability, and towns tend to 

be located in a range moderate low to high vulnerability levels. 

Table 21 – DRASTIC Method – Results Percent Per-rating 

DRASTIC Percent Vulnerability 
Ranking Rating Mining Towns Agriculture 

1 Very Low 36.46 0.35 3.52 
2 Low 32.99 1.05 7.98 
3 Moderate Low 17.21 12.67 13.66 
4 Moderate   10.40 34.98 25.73 
5 Moderate High 2.06 31.11 16.26 
6 High 0.78 17.64 26.22 
7 Very High 0.10 2.20 6.63 

 

 

Figure 16 – DRASTIC - Percent vs. Rating Vulnerability Graph:  Land use is displayed 
in percent occurrence for each of the three defined regions  
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The results indicate that, in the region studied, mining is located predominantly in 

regions of very low to moderate vulnerability.  This finding is coincidental in this region 

because the natural deposits of precious metals are typically located in mountain regions 

in Nevada.  In contrast, agriculture is located in regions of moderate to high vulnerability.  

This can be realized based on the shallow slope and the shallow depth to ground water, 

which are favorable conditions for agricultural activities.  Similarly, towns are located 

mostly in the moderate to high regions of natural vulnerability most likely due to the 

location of the dominating industry (e.g. mining and agriculture) and accessibility to 

water.   

It was hypothesized in this study that activities in towns may be as potentially 

detrimental to groundwater as mining.  The vulnerability map for the studied region 

indicates that activities in towns are potentially more detrimental to groundwater quality 

due to the location and geologic and/or hydrogeologic conditions.  This implies that if a 

contaminant were to be released at a town, the ground water could be contaminated more 

readily than if a similar contamination were to occur at a mining site.  This is almost 

entirely due to the differences in location of the land use areas and should be considered 

coincidental or a special case in Nevada.   Therefore, DRASTIC results indicate that the 

potential for groundwater contamination in Northern Nevada is higher for mining towns 

than for mining itself. 

Agriculture has the highest vulnerability indicating that any contaminant released 

in agricultural areas may likely contaminate the groundwater easier than if a similar 
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contaminant were released in towns or mining areas.  As with the towns, geologic 

conditions that favor agriculture are in regions of high vulnerability. 

4.4 Arsenic and Nitrate contamination correlation with vulnerability and land use 

Naturally occurring and anthropogenic contaminants have been detected in 

groundwater wells of northern Nevada.  Naturally occurring contaminants detected in the 

area include arsenic, fluoride, and radionuclides.  Nitrate, an anthropogenic contaminant 

has also been detected. 

While arsenic, fluoride, and radionuclides in Nevada are naturally occurring, 

nitrate is generally associated with the use of septic tanks, manure spreading, and the use 

of fertilizers in agricultural activities.  A correlation was performed between the detection 

of naturally occurring and anthropogenic compounds detected in wells of the study area 

with the vulnerability ranking established by DRASTIC and land use types.   It is 

expected that a low correlation will be found for naturally occurring compounds because 

their transport is independent on the aspects considered in DRASTIC.  Nitrate, on the 

other hand, being an anthropogenic contaminant should have a strong correlation with 

vulnerability for the three land uses because the contaminant is commonly associated 

with specific potential contaminant sources.  It is expected that that mining areas have a 

lower vulnerability to nitrate contamination than towns and agricultural areas. 

The correlation between DRASTIC and the detected contaminants was tested by 

plotting occurrence frequency versus the level of vulnerability (Table 22).  The frequency 

was computed by dividing the number of wells with contaminant detections per total 



www.manaraa.com

70 
 

number of wells located in the defined level of vulnerability (equation 6) (Kalinski, et al., 

1994).   

Frequency = 
ே௨		ௐ௦	௪௧	௧௧௦

்௧	ே௨		௪௦
    (Equation 6) 

 

Table 22 – Correlation of Arsenic with Vulnerability 

Vuln Rating Wells w/ As Total Wells Frequency 

1 6 6 1.00 

2 3 6 0.50 

3 9 10 0.90 

4 16 23 0.70 

5 16 19 0.84 

6 17 19 0.89 

7 6 6 1.00 

 

Figure 17 shows the frequency of arsenic detections versus vulnerability rating for 

110 wells located in the studied region.  When all the data were plotted, a very weak 

correlation (R2=0.0986) was found.  However, when the low vulnerability ranking was 

removed, a very strong correlation was observed (R2=0.9689).  The rationale of removing 

the low vulnerability data is that there are few or no areas in the region where the 

potential for groundwater contamination with naturally occurring contaminants is low; 

this is the case because these compounds occur extensively in the entire region.   
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Figure 17 – Arsenic detection correlation with vulnerability ranking using DRASTIC.  
 

 

A similar correlation to that performed for arsenic was also carried out for 

fluoride and radionuclide detections.  Similar to that observed for arsenic strong 

correlation was also found for fluoride when the low vulnerability data was removed 

(Tables 22 and 23, Figures 17 and 18).  The correlation for radionuclides is not as strong 

as that observed for arsenic and fluoride. 
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Figure 18 – Fluoride detection correlation with vulnerability ranking using DRASTIC.  
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Figure 19 – Radionuclide correlation with vulnerability ranking using DRASTIC. 
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agriculture due to increased use of manure spreading and fertilizer on fields.   However, 

from all three activities, mining is expected to be the one with less likelihood to promote 

contamination by nitrate because the number of septic tanks and other nitrate-generating 

activities are less prevalent in this land use than in agriculture and towns. 

Figure 20 shows a very low correlation between nitrate detections in the entire 

region and the vulnerability established by DRASTIC. 

Table 25 – Correlation of Nitrate with Vulnerability for the three land uses 

Mining Agriculture Towns Total 
Vuln 
Value 

Nitrate 
Detect 

Total 
Wells Freq. 

Nitrate 
Detect 

Total 
Wells Freq. 

Nitrate 
Detect 

Total 
Wells Freq. Freq. 

1 0 2 0.00 5 5 1.00 0 0 0.00 0.83 

2 0 3 0.00 2 3 0.67 2 2 1.00 0.67 

3 2 3 0.67 7 7 1.00 0 0 0.00 0.90 

4 2 8 0.25 13 18 0.72 4 7 0.57 0.83 

5 2 8 0.25 2 3 0.67 13 13 1.00 0.89 

6 0 0 0.00 1 1 1.00 15 20 0.75 0.74 

7 0 0 0.00 1 3 0.33 1 4 0.25 0.33 

 

 

Figure 20 – Correlation between nitrate and vulnerability as established by DRASTIC. 
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Figure 21 – Correlation of Nitrate with DRASTIC vulnerability for the three land uses. 
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ancillary facilities in the foot hills, encroaching on historic agriculture.   For these plots, 

the low vulnerability data was removed for agriculture and towns as well as the high 

vulnerability data was removed for mining. 

4.5 NDEP Modified Method 

The NDEP modified method uses characteristic of individual wells to determine a 

numeric value that is related to a level of vulnerability.  Vulnerability was established in 

seven levels as very low, low, moderate low, moderate, moderate high, high, or very 

high.  The results were based on the calculation of 110 wells and springs, hereon referred 

as wells, located in the three land uses, agriculture, mines, and mining towns within the 

same study area as used in the DRASTIC model.  Figure 22 depicts the approximate well 

locations with the assigned vulnerability rating for a visual reference of occurrence.  
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Figure 22 – NDEP Modified Method approximate well locations:  Wells with different 
shading indicate different levels of final vulnerability. 

A comparison between the three land uses has been prepared using a percent 

occurrence based on the land use from the well locations.  This was accomplished by 

tallying the values of the 7 levels of vulnerability to determine the percent of values that 

occur within each of the defined regions.  The results are shown in Table 26 and 

accompanying graph (Figure 23).  The graph has been displayed with the three land uses 

side by side per value of vulnerability.   
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Table 26 – NDEP Modified Method – Results Percent Per-rating 

NDEP Modified Method Percent Vulnerable 

Ranking Rating Mining Towns Agriculture 

1 Very Low 20.83 8.16 8.70 
2 Low 8.33 20.41 50.00 
3 Moderate Low 25.00 6.12 17.39 
4 Moderate 12.50 16.33 6.52 
5 Moderate High 16.67 10.20 6.52 
6 High 12.50 22.45 4.35 
7 Very High 4.17 16.33 6.52 

 

 

Figure 23 – NDEP Modified Method - Percent vs. Rating Vulnerability Graph:  Land use 
is displayed in percent occurrence for each of the three defined regions of land uses. 
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moderate to high vulnerability areas.  From examining the data of the wells associated 

with agriculture, few of the wells have significant number of PCSs located within the 

buffer zone.  These wells also have a small number of contaminant detections resulting in 

predominantly low vulnerability ranking.  Towns are located in areas that have many to 

no PCSs associated with the wells.  The water quality of towns tends to have more 

contaminants detected than other wells.  Mining results in a range of values of 

vulnerability with most occurring from very low to moderate.  From reviewing the data, 

the majority of the wells are located away from mining activities with few PCSs.  The 

water quality of mines tends to have greater number of naturally occurring contaminant 

detections. 

DRASTIC AND NDEP MODIFIED METHOD COMPARISON 

The DRASTIC vulnerability map indicates that most mining areas are located in 

low vulnerability regions with towns and agriculture located areas of moderate to high 

vulnerability.  When comparing the percent area vulnerability forecasted by DRASTIC 

and the NDEP method, mining and towns are rated similarly by both methods.  However, 

while DRASTIC rates agricultural areas as being of moderate to high vulnerability, the 

NDEP method rate agricultural areas as having moderate to low vulnerability.  Because 

both methods contain inherent subjectivities, one cannot determine which one is more 

accurate unless they are compared with actual contaminant detection data. 
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Figure 24 – DRASTIC and NDEP Vulnerability Comparison Map 

Figure 24 depicts both methods within the same map for a visual comparison of 

the vulnerability levels.  The background is the vulnerability results of DRASTIC and the 

symbols are the different results from the NDEP modified method.  With the visual 

comparison as well as the percent occurrence results, one can see that a different means 

of comparison is needed. 
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To compare the two methodologies, the NDEP point map was transformed from 

points into a raster (grid).  Having two raster images allows for direct comparison of the 

land use boundaries.  Initially, Kriging was considered as a potential technique to convert 

the point data to a map.  The point Kriging method, contained within ArcMap, did not 

generate a satisfactory map.  With the assistance from Dr. A.K. Singh (UNLV Math 

department), area Kriging, using a proprietary software, was experimented with.  

However, the variogram obtained (Appendix B, Figure B1) was very poor indicating that 

the use of Kriging was not appropriate.  In addition the Inverse Distance Weighted 

method in ArcMap was also analyzed.  The results indicated a range of values from the 

moderate low to moderate high range.  The values for very low, low, high, and very high 

were omitted from the results.  This produced very little distinction between the land uses 

rendering any analysis difficult to interpret.  The transformation of the NDEP points to a 

raster was then performed via triangulated irregular network (TIN) methodology 

contained within the ArcMap software.   

The well contaminant detection data, previously used with DRASTIC (Section 

4.4) was then used to compare DRASTIC and the NDEP modified method.   

The goal is to determine which map best predicts the actual occurrence of contamination.  

Table 27 – DRASTIC and NDEP Modified Method Comparison - Arsenic 

  NDEP DRASTIC 

Vuln Value Wells w/ As Total Wells Freq. Wells w/ As Total Wells Freq. 

1 1 2 0.50 6 6 1.00 

2 22 27 0.81 3 6 0.50 

3 10 15 0.67 9 10 0.90 

4 5 9 0.56 16 23 0.70 

5 7 7 1.00 16 19 0.84 
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  NDEP DRASTIC 

Vuln Value Wells w/ As Total Wells Freq. Wells w/ As Total Wells Freq. 

6 12 12 1.00 17 19 0.89 

7 12 12 1.00 6 6 1.00 

 

 

Figure 25 – NDEP versus DRASTIC comparison arsenic contaminant. 
 
 

Figure 25 shows the comparison between the NDEP and DRASTIC methods to 

forecast arsenic detection in 84 wells.  NDEP has a better correlation (0.6039) than 

DRASTIC (0.0986) for arsenic contamination.  For fluoride, the NDEP method forecasts 

the data better than the DRASTIC method as well.  The same is observed for 

radionuclides (Figure 27).  Because the NDEP method takes into consideration historic 

contaminant detection in its vulnerability ranking, it accounts for naturally occurring 

contaminants.  That is not the case with DRASTIC.  Therefore, an advantage of the 
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NDEP method is its capacity to include naturally occurring contaminants in the 

vulnerability ranking. 

Table 28 – DRASTIC and NDEP Modified Method Comparison - Fluoride 

  NDEP DRASTIC 

Vuln Value Wells w/ F Total Wells Freq. Wells w/ F Total Wells Freq. 

1 1 2 0.50 5 6 0.83 

2 21 27 0.78 3 6 0.50 

3 12 15 0.80 8 10 0.80 

4 8 9 0.89 22 23 0.96 

5 5 7 0.71 14 19 0.74 

6 11 12 0.92 15 19 0.79 

7 12 12 1.00 4 6 0.67 

 

 

Figure 26 – NDEP versus DRASTIC correlation for fluoride detection:  NDEP has a 
better correlation (0.6417) than DRASTIC (0.00007) for fluoride contamination. 
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Table 29 – DRASTIC and NDEP Modified Method Comparison - Radionuclide 

  NDEP DRASTIC 

Vuln Value 
Wells w/ 

RAD Total Wells Freq. 
Wells w/ 

RAD Total Wells Freq. 

1 0 2 0.00 6 6 1.00 

2 20 27 0.74 3 6 0.50 

3 10 15 0.67 6 10 0.60 

4 6 9 0.67 18 23 0.78 

5 3 7 0.43 13 19 0.68 

6 11 12 0.92 16 19 0.84 

7 10 12 0.83 5 6 0.83 

 

 

Figure 27 – NDEP versus DRASTIC correlation for radionuclide contamination:  NDEP 
has a better correlation (0.4262) than DRASTIC (0.0153) for radionuclide contamination 
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Table 30 – DRASTIC and NDEP Modified Method Comparison - Nitrate 

  NDEP DRASTIC 

Vuln Value 
Wells w/ 
Nitrate 

Total 
Wells Freq. 

Wells w/ 
Nitrate 

Total 
Wells Freq. 

1 2 2 1.00 5 6 0.83 

2 27 27 1.00 4 6 0.67 

3 12 15 0.80 9 10 0.90 

4 7 9 0.78 19 23 0.83 

5 4 7 0.57 17 19 0.89 

6 9 12 0.75 14 19 0.74 

7 12 12 1.00 2 6 0.33 

 

 

Figure 28 – NDEP versus DRASTIC correlation for nitrate contamination. 
 

Figure 28 shows the correlation between nitrate detection for the DRASTIC and 

the NDEP method.  Both methods have a poor correlation with nitrate detection.  A 

reason for the weak correlation with DRASTIC is the presence of many nitrate detections 
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in the area of low and very low vulnerability for the agricultural land use.  For the NDEP 

method, the sparse number of potential contaminant sources within the established 3,000 

foot radius results in a low vulnerability as compared to wells with a larger number of 

potential contaminant sources.  The area studied has a few small towns associated with it, 

but the region is predominantly rural.  Therefore, many wells have only a few potential 

contaminant sources associated with it.  It seems there is an inherent bias in the NDEP 

method related to the number of potential contaminant sources associated with the wells 

under evaluation.  Although not investigated in this thesis, it would be interesting to 

examine this hypothesis in an urban area where a large number of potential contaminant 

sources are associated with specific wells. 

LIMITATIONS OF DRASTIC AND NDEP METHOD  

There exist several advantages and disadvantages when comparing DRASTIC 

with the NDEP index methods.   

Table 31 – DRASTIC and NDEP Limitations Comparison 

DRASTIC NDEP 

Less time consuming; minimal labor required Uses water quality data 

Able to determine vulnerability for large regions Accounts for potential sources of contamination 

Able to suggest location of future wells Expensive and time consuming (Labor intensive) 

Does not account for water quality Only assesses area within a buffer zone 

Does not account for PCSs Vulnerability is determined after well is dug 
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The major ones are shown in Table 31.  In addition, there are several limitations 

when using either method, including:  accuracy of data, missing data, general data 

quality.  Specific limitations of the methodology include:   

1) DRASTIC vulnerability mapping is reliant on the accuracy of the data available.  

Because the data set is collected from different sources, information on specific 

aspect layer may be more complete on others.  For example, in the case of depth 

to water, a large portion of the study area did not have data associated with it.  

Therefore, in the model the absence of data corresponds to a value of zero, but it 

is not necessarily the case. 

2) DRASTIC does not account for historic contamination because it does not use 

water quality as a parameter.   

3) IMPACT, the eight component of DRASTIC, may account for PCSs but appears 

that IMPACT can only account for one PCS at a time creating a cumbersome 

vulnerability map when dealing with a multitude of PCS types.   

4) In the specific case of this study, the entire data sets used for the DRASTIC 

vulnerability map may not be needed from the results of the sensitivity analysis.  

Therefore, recharge, depth to water, and hydraulic conductivity could be omitted 

with similar results.  However, the accuracy of the remaining four data sets would 

be more important to insure that areas of low vulnerability are not misrepresented 

and vice versa.  

The NDEP index method also has limitations:   



www.manaraa.com

88 
 

1) NDEP vulnerability mapping is reliant on the accuracy of the well driller’s log 

and the surveying of PCS within the buffer zone.  Older driller’s logs may omit 

crucial information such as confining layers or identifying water barring strata 

above the well screen placement.   

2) New wells that do not have historic water quality associated with it will be 

reported as no detections.  Therefore, the vulnerability is underrated.   

3) Like DRASTIC, the NDEP method does not directly account for naturally 

occurring contaminants.  Arsenic, as an example, is found to be common in the 

study area.  With no recorded detection this well could be listed at a lower 

vulnerability rating than the actual rating.   

4) The NDEP method seems to be limited by the number of PCSs present, giving 

lower rating to areas with smaller number of PCSs.  5) The NDEP modified 

method uses a predefined value for a PCS that is 100, 200, or 300 based on the 

level of initial potential to contaminate.  Equations 3 and 4 were based on these 

values. If different values are to be assigned for the initial rating, the values of the 

equations will need to be reassigned as well. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

5.1 Conclusion 

The two main objectives in this research are:  (1) to compare the three land use of 

mining, towns, and agriculture based on the groundwater vulnerability assessments using 

the DRASTIC method; and (2) compare the DRASTIC method and the NDEP modified 

method as tools to evaluate ground water vulnerability in northern Nevada.  The first 

objective used a percent occurrence for the three defined land uses utilizing a DRASTIC 

map prepared in accordance of the USEPA guidelines.  The second objective used a 

triangulated irregular network (TIN) to reevaluate the well to a raster and determined a 

percent occurrence for the same land use areas.  Additional data were used to further 

compare the methods with actual historic water quality data.  The methods were tested to 

forecast detection of naturally occurring and anthropogenic contaminants. 

The first objective was accomplished by applying the outline of the methodology 

for DRASTIC and plotting the land use regions on a raster map (grid).  The DRASTIC 

method was prepared by using the seven parameters with a determined numeric value for 

each unique feature of the parameters.  Using a simple calculation with weighted values, 

a determination of vulnerability was created.  Using defined areas for the three land uses, 
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a determination of how many cells of each value occur within the three land uses was 

computed.  This was converted to a percent occurrence for comparison for each of the 

seven levels of vulnerability. 

The second objective was accomplished by utilizing the NDEP modified method 

and applying a numeric rating for different aspects for the wells.  The numeric values 

were converted (reclassified) into values 1 through 7 for very low to very high 

respectfully.  The well values were categorized into the three land uses to determine a 

percent occurrence for the seven levels of vulnerability.  To be compared with 

DRASTIC, the point data of the wells had to be transformed into a raster image utilized 

triangulation.   

The main conclusions of this research are as follows: 

1) In general, the DRASTIC vulnerability map created for northern Nevada indicates 

that areas of high ground water contamination vulnerability are located in the 

valleys while the mountainous regions have low vulnerability to contamination.  

That is, mining areas are associated with very low to moderate vulnerability and 

agricultural areas and towns are located in areas of moderate to high vulnerability.  

Therefore, according to DRASTIC, in northern Nevada, mining towns and 

agricultural areas are more susceptible to groundwater contamination than mining 

areas. 

2)  A sensitivity analysis of the parameters involved in DRASTIC, using two 

methods revealed that the vadose zone, aquifer media, soil media and topographic 

slope are the most significant parameters controlling vulnerability.  The 
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parameters with least significance are depth to water, recharge, and hydraulic 

conductivity. 

3) A correlation between naturally occurring and anthropogenic contaminants and 

the vulnerability ranking from DRASTIC revealed that a very poor correlation 

exists for arsenic, fluoride, and radionuclides, which are naturally occurring.  This 

was expected since DRASTIC does not account for naturally occurring 

contamination.  Naturally occurring contaminants are widely detected in wells in 

northern Nevada and are expected to occur randomly.  Therefore, all areas in 

northern Nevada have high potential for the detection of naturally occurring 

contaminants.  When the low vulnerability data were removed from the dataset, a 

very high correlation was found for arsenic and fluoride.  Radionuclides did not 

correlate well. 

4) Correlation of DRASTIC ranking with nitrate was very weak (R2=0.281).  

Correlation of nitrate detections with specific land uses were stronger (R2=0.465 

for mining; R2=0.518 for towns; and R2=0.363 for agriculture).  However, the 

correlation coefficients are not sufficiently high to strongly support the supposed 

correlation.  However, the number of nitrate detections in the entire region is very 

high.  Therefore, DRASTIC cannot forecast nitrate contamination well for this 

region.  It is likely that nitrate contamination currently detected in mining areas is 

the result of historic use of the land for agriculture, before mining was 

established.  Several mining operations have located their ancillary facility foot 

hills near or on historic agricultural areas.  DRASTIC does not account for this 

fact. 
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5) A comparison of the vulnerability ranking provided by DRASTIC and by the 

NDEP method revealed that mining and towns are rated similarly by both 

methods as having low to moderate and moderate to low vulnerability, 

respectively.    However, DRASTIC rated agricultural areas as moderate to high 

vulnerability while the NDEP method rates it as moderate to low vulnerability.  

Both methods are subjective and one cannot ascertain their accuracy unless they 

are compared with actual contamination data. 

6) Correlation of actual contaminant data with DRASTIC and NDEP vulnerability 

forecasts revealed that the NDEP method provides a better correlation between 

naturally occurring contaminants (i.e. arsenic, fluoride, and radionuclides) than 

DRASTIC.  This is the case because the NDEP method uses historic contaminant 

detections as one of its variables.  Correlation between nitrate detections and both 

NDEP and DRASTIC methods is poor (R2=0.117 for NDEP and R2=0.2814 for 

DRASTIC).  For DRASTIC the reason maybe that many detections of nitrate are 

found in areas forecasted as having low vulnerability.  The sparse number of 

contaminant sources in rural areas as compared to towns, may have contributed to 

this low vulnerability rating. 

7) In general, it seems that the NDEP method can better forecast contamination 

compared to DRASTIC.  However, the NDEP method requires extensive data 

collection and therefore it is more costly and time consuming than DRASTIC. 

5.2 Recommendations for Future Research 

 Both methods, DRASTIC and NDEP generate usable data for communities or 

planners to deal with issues of potential contamination of groundwater.  Neither one 
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depicts the full impact of the groundwater vulnerability.  However, the NDEP method 

forecast the presences of naturally occurring contaminants better than DRASTIC. 

Suggested future research in this area includes: 

1) The impact of the number of potential contaminant sources on the vulnerability 

forecast by the NDEP method.  This could be accomplished by applying the 

method to an urban area where potential contaminant sources can be added step-

wise. 

2) Applying DRASTIC to other areas of Nevada where the topographic component 

(i.e. valleys and mountains) is not as significant as in northern Nevada. 

Recommended Counties would be Clark and Washoe which have long valley 

ranges, where most of the population is located. 

3) The correlation between nitrate and both vulnerability determination methods was 

poor, possibly because nitrate is associated with many different sources.  It would 

be worthwhile to investigate other contaminants such as volatile organic 

compounds (VOC) and synthetic organic compounds (SOC) correlation with 

DRASTIC and the NDEP method.  These contaminants are specific to certain 

sources. 
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APPENDIX A 

Table A1 - Ratings for Revised Aquifer Media Features 

Aquifer Media 

Feature Rating

Unconsolidated Sand and Gravel 8 
Carbonate-rock 6 
Other Rock 4 

 

Table A2 - Ratings for Impact of Vadose Zone Media Features 

Impact of Vadose Zone

Feature 
ID Feature Name Rating 

WBDY Water body 0 
bx Breccia 3 
Cc Carbonate rocks & minor quartzite 3 

Cpm Prospect mountain quartzite 3 
CPq Foliated metaquartzite 3 
DCm Calcite marble & dolomite marble 3 
Jgr Granite 3 
Kgr Granite 3 
Oe Eureka quartzite 3 

Oem Metaquartzite 3 
Dd Sevy, Simonson, & Nevada formations 4 

Dgd Guilmette & Devils Gate formations 4 
Dm Graphitic marble 4 

DOm Dolomite marble 4 
DPm Metamorphic rocks 4 
DSlm Lone mountain dolomite 4 
Knc Newark canyon formation 4 
m Migmatite 4 

Mzgn Gneiss 4 
Oa Aura formation 4 

OCm Calcite marble 4 
Op Pogonip group 4 

PMl Limestone, shale, chert, orthoquartzite, & quartz 4 
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Impact of Vadose Zone

Feature 
ID Feature Name Rating 

Pp Pequop formation 4 
Ppc Park City group 4 

PPcd Carbonate & detrital rocks 4 
Ps Schist 4 

Tgr Alaskitic granite 4 
Tw Welded tuff, tuffaceous sedimentary rocks, vitric 4 

DOd Dolomitic rocks 7 
DSrm Roberts mountains formation 7 

Jd Diorite 7 
JTRs Nonmarine sedimentary rocks 7 
Ma Argillite of Lee canyon 7 

Mbn Banner & Nelson formations 7 
Ms Sedimentary clastic & limy rocks 7 
Mtp Tripon pass limestone 7 
Mw Webb formation 7 
Pmc McCoy creek group 7 
Ppcg Grandeur formation 7 

PPPcs Carlin sequence 7 
PPPhr Havallah & reservation hill formations 7 

Qg Glacial morains 7 rock glasiers 7 
Ta2 Phenoandesitic and phenolatitic flows 7 
Ta3 Pyroxene & hornblende phenoandesite & phenodacite 7 
Tg3 Gravel 7 
Tls Landslide deposits 7 
Tpr Porphyritic phenorhyolitic & phenodacitic flows & 7 
Tr2 Phenorhyolitic & phenodacitic tuff, flows, & domes 7 
Tr3 Phenorhyolitic & phenodacitic flows & domes 7 

TRPs Sedimentary and volcanic rocks 7 
TRs Marine sedimentary rocks 7 
Tt1 Phenorhyolitic to phenodacitic ignimbrite 7 
Tt3 Pyroxene phenodacite ignimbrite 7 
Tts Ignimbrite, tuff, and sedimentary rocks 7 
Ttsl Tuff, sedimentary rocks, and lava 7 
Qa Alluvium 8 

QThs Hot-spring travertine and sinter 8 
QTls Landslide deposits and colluvium 8 
Tbi Big island formation 8 
Tbx Breccia 8 
Dl Limestone 9 

DOs Mdst.,Sh.,chert,Slts.,Gray Qzt. 9 
DOsl Limestone 9 
DSd Dolomitic limestone & dolomite 9 
Dt Platy siltstone, limestone, & shale 9 
Dw Woodruff formation 9 
Jf Frenchie creek rhyolite 9 

Mc Chainman shale 9 
MDg Grossman formation 9 
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Impact of Vadose Zone

Feature 
ID Feature Name Rating 

MDjp Joana limestone & pilot shale, undivided 9 
OCs Shale, phyllite, & limestone 9 
Pbl Unnamed bioclastic limestone 9 
Pem Edna mountain formation 9 
Pgp Gerster & phosphoria formations 9 
Phm Sandstone & siltstone of Horse mountain 9 
PPe Ely limestone 9 
Pph Phosphoria formation 9 

PPmc Mitchell creek formation 9 
PPMdc Diamond peak & Chainman formations, undivided 9 
PPMdp Diamond peak formation 9 
PPMpd Unnamed bioclastic limestone 9 
PPMs Schoonover formation 9 
PPPl Limestone and dolomite 9 
PPPs Strathearn formation 9 
PPPu Undivided limy rocks 9 
PPq Quilici formation 9 

PPvd Van Duzer limestone 9 
Qls Landslide deposits and colluvium 9 
Qp Pluvial lake deposits 9 

QTa Older alluvium 9 
QTs Sedimentary rocks 9 
SOd Predominantly dolomitic rocks 9 
SOh Hanson creek formation 9 
Ta1 Andesitic to latitic flows and pyroclastic rocks 9 
Tb basalt flows 9 

Tb2 Basalt, basaltic tuff, & tuff breccia 9 
Tb3 Basalt 9 
Tbc basaltic cinder, tuff, and lava cones 9 
Tc Conglomerate 9 

Tgd Granodiorite, quartz monzonite 9 
Tjr Jarbidge rhyolite 9 
Tl Latitic rocks 9 

Tr1 Rhyolitic to dacitic flows and domes 9 
TRPc Marine conglomerate 9 
Ts1 Sedimentary rocks 9 
Ts2 Tuffaceous & clastic sedimentary rocks 9 
Ts3 Sedimentary and volcanic rocks 9 
Ts3 Sedimentary and volcanic rocks 9 
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Table A3 – NDEP Vulnerability Rating Table 

Potential Contaminant Source Initial Risk Ranking 

#  Potential Source  Category 
Risk 
Rank  #  Potential Source  Category 

Risk 
Rank 

Agricultural  Medical/Educational 

1  Animal burial areas  C, D  H  28  Educational institutions  B, C  M 

2  Animal feedlots  B, C, D  H to M  29  Medical institutions  D, E  L 

3  Chemical application  C, B  H  30  Research laboratories  A to E  H 

4  Chemical mixing & storage  A, B, C  H  Storage 

5 

Irrigated fields  A, B  M  31  Aboveground storage tanks  A, B  H 

Irrigation ditches  B, C  H  32  Underground storage tanks  A  H 

6  Manure spreading & pits  A, C, D  M  33  Public storage  A, B, C  L 

7  Unsealed irrigation wells  A, B, C, D  H  34  Radioactive material storage  E  L 

Industrial  Municipal Waste 

8  Chemical manufacturing  A, B, C  H  35  Dumps and landfills  A to E  H 

9  Electroplaters & fabrication  C  H  36  Municipal incinerators  B, C, D  M 

10  Electrical manufacturing  C  H  37  Recycling/reduction facilities  A to E  H 

11  Machine & metalworking  A  H  38  Scrap & junkyards  A, C  H 

12  Manufacturing sites  A, B, C  H  39  Wastewater treatment plants  A, B, C, D  H 

13  Petroleum distribution  A  H  40  Sewer transfer stations  A, B, C, D  H 

Commercial  Miscellaneous 

14  Dry Cleaners  A  H  41  Airports  A  H 

15  Furniture & wood stripping  A, C  H  42  Asphalt plants  A  H 

16  Jewelry & metal plating  C  H  43  Boat yards  A  H 

17  Laundromats  ‐  L  44  Cemeteries  D  M 

18  Paint shops  A  H  45  Construction areas  A  M 

19  Photography & printing  C  H  46  Dry wells  A  H 

Automotive  47  Fuel storage systems  A  H 

20  Auto repair shops  A, C  H  48  Golf courses & parks  B, C  H 

21  Car washes  A, C, D  M  49  Mining  A, C, E  H 

22  Gas stations  A, C  H  50  Pipelines  A  H 

23  Road deicing & storage  C  M  51  Railroad tracks & yards  A, B, C, D  H 

24  Road maintenance depots  A, C  H  52  Surface water  D  H 

Residential  53  Stormwater drains & basins  A to E  H 

25  Household hazardous waste  A, B, C  M  54  Unplugged abandoned wells  A, B, C, D  H 

26  Private wells  A, B, C, D  M to H  55  Operating well  A, B, C, D  H to L 

27  Septic systems & cesspools  B, C, D  H to M  56  Other  A, B, C, D  H to L 

Contaminant Category Codes (A ‐ VOC, B ‐ SOC, C ‐ IOC, D ‐ Microbial, and E ‐ Radionuclides). 

Risk Ranking Codes (L ‐ Low, M ‐ Moderate, and H ‐ High) Potential Contamination Vulnerability. 
Table has been reproduced from the NDEP Source Water Protection Report (NDEP, 2007). 
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Table A4 – DRASTIC Vulnerability Rating Table without Depth to Water 

Minus Depth to Water

Ranking  Rating  Mining Towns Agriculture 

1  Very Low 38.47 0.49 4.10 
2  Low  33.66 2.07 9.52 
3  Moderate Low 18.17 47.18 49.95 
4  Moderate   9.70 50.26 36.43 
5  Moderate High 0.00 0.00 0.00 
6  High  0.00 0.00 0.00 
7  Very High 0.00 0.00 0.00 

 

Table A5 – NDEP Vulnerability Rating Table without Recharge 

Minus Recharge

Ranking  Rating  Mining Towns Agriculture 

1  Very Low 52.19 0.66 6.06 
2  Low  24.68 2.34 9.40 
3  Moderate Low 14.46 24.61 17.94 
4  Moderate   6.57 41.58 22.84 
5  Moderate High 1.56 20.15 22.04 
6  High  0.54 10.50 21.40 
7  Very High 0.00 0.16 0.32 

 

Table A6 – NDEP Vulnerability Rating Table without Aquifer Media 

Minus Aquifer Media

Ranking  Rating  Mining Towns Agriculture 

1  Very Low 67.28 2.85 11.77 
2  Low  22.30 24.70 21.05 
3  Moderate Low 8.25 41.61 23.14 
4  Moderate   1.58 20.15 21.68 
5  Moderate High 0.59 10.52 22.03 
6  High  0.00 0.17 0.33 
7  Very High 0.00 0.00 0.00 
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Table A7 – NDEP Vulnerability Rating Table without Soil Media 

Minus Soil Media

Ranking  Rating  Mining Towns Agriculture 

1  Very Low 79.7 2.83 14.57 
2  Low  15.54 25.26 19.24 
3  Moderate Low 2.84 44.36 22.92 
4  Moderate   1.25 14.75 15.49 
5  Moderate High 0.67 12.8 27.78 
6  High  0 0 0 

 

Table A8 – NDEP Vulnerability Rating Table without Topography 

Minus Topography

Ranking  Rating Mining Towns Agriculture 

1  Very Low 64.03 1.19 11.88 
2  Low  24.70 27.42 20.72 
3  Moderate Low 9.41 46.24 25.78 
4  Moderate   1.61 20.45 31.34 
5  Moderate High 0.25 4.70 10.28 
6  High  0.00 0.00 0.00 

 

Table A9 – NDEP Vulnerability Rating Table without Impact of Vadose 

Minus Impact of Vadose

Ranking  Rating Mining Towns Agriculture 

1  Very Low 82.29 10.16 21.41 
2  Low  13.33 36.96 24.71 
3  Moderate Low 2.81 31.98 15.42 
4  Moderate   1.41 18.13 30.20 
5  Moderate High 0.16 2.77 8.26 

6  High  0.00 0.00 0.00 
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Table A10 – NDEP Vulnerability Rating Table without Hydraulic Conductivity 

Minus Hydraulic Conductivity

Ranking  Rating Mining Towns Agriculture 

1  Very Low 43.91 0.67 4.20 
2  Low  33.94 3.77 12.61 
3  Moderate Low 14.35 31.12 21.28 
4  Moderate   5.88 38.18 19.35 
5  Moderate High 1.46 17.11 21.84 

6  High  0.46 9.15 20.72 

 

Table A11 – Water Quality Maximum Contaminant Levels 

Contaminant 
MCL 

(mg/L) 

Microorganisms 
Cryptosporidium 0 
Giardia lamblia 0 
Heterotrophic plate count 0 
Legionella 0 

Total Coliforms 0 

Turbidity 0 
Viruses (enteric) 0 

Disinfection Byproducts 
Bromate 0.01 

Chlorite 1 

Haloacetic acids (HAA5) 0.06 

Total Trihalomethanes (TTHMs) 0.08 

Disinfectants 
Chloramines (as Cl2) MRDL=4.01 

Chlorine (as Cl2) MRDL=4.01 

Chlorine dioxide (as ClO2) MRDL=0.81 

Inorganic Chemicals 
Antimony 0.006 

Arsenic 0.01 

Asbestos 7 MFL 

Barium 2 

Beryllium 0.004 

Cadmium 0.005 

Chromium (total) 0.1 

Copper 1.3 

Cyanide (as free cyanide) 0.2 

Fluoride 4 

Lead 0.015 
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Contaminant 
MCL 

(mg/L) 
Mercury (inorganic) 0.002 

Nitrate (measured as Nitrogen) 10 

Nitrite (measured as Nitrogen) 1 

Selenium 0.05 

Thallium 0.002 

Organic Chemicals 
Acrylamide 0 

Alachlor 0.002 

Atrazine 0.003 

Benzene 0.005 

Benzo(a)pyrene (PAHs) 0.0002 

Carbofuran 0.04 

Carbon tetrachloride 0.005 

Chlordane 0.002 

Chlorobenzene 0.1 

2,4-D 0.07 

Dalapon 0.2 

1,2-Dibromo-3-chloropropane (DBCP) 0.0002 

o-Dichlorobenzene 0.6 

p-Dichlorobenzene 0.075 

1,2-Dichloroethane 0.005 

1,1-Dichloroethylene 0.007 

cis-1,2-Dichloroethylene 0.07 

trans-1,2-Dichloroethylene 0.1 

Dichloromethane 0.005 

1,2-Dichloropropane 0.005 

Di(2-ethylhexyl) adipate 0.4 

Di(2-ethylhexyl) phthalate 0.006 

Dinoseb 0.007 

Dioxin (2,3,7,8-TCDD) 0.00000003 

Diquat 0.02 

Endothall 0.1 

Endrin 0.002 

Epichlorohydrin 0 

Ethylbenzene 0.7 

Ethylene dibromide 0.00005 

Glyphosate 0.7 

Heptachlor 0.0004 

Heptachlor epoxide 0.0002 

Hexachlorobenzene 0.001 

Hexachlorocyclopentadiene 0.05 

Lindane 0.0002 

Methoxychlor 0.04 

Oxamyl (Vydate) 0.2 

Polychlorinated 0.0005 

biphenyls (PCBs) 

Pentachlorophenol 0.001 

Picloram 0.5 

Simazine 0.004 

Styrene 0.1 

Tetrachloroethylene 0.005 

Toluene 1 

Toxaphene 0.003 

2,4,5-TP (Silvex) 0.05 
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Contaminant 
MCL 

(mg/L) 
1,2,4-Trichlorobenzene 0.07 

1,1,1-Trichloroethane 0.2 

1,1,2-Trichloroethane 0.005 

Trichloroethylene 0.005 

Vinyl chloride 0.002 

Xylenes (total) 10 

Radionuclides 
Alpha particles 15 pCi/L 

Beta particles and photon emitters 4 
millirems/yr 

Radium 226 and Radium 228 
(combined) 

5 pCi/L 

Uranium 30 ug/L 
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APPENDIX B 

Table B1 Part A – NDEP Modified Method Data Values 

ID  LANDUSE 
Int 
Vuln  Int V  VOC 

W
VOC  SOC 

W
SOC  IOC 

W
IOC  RAD 

W 
RAD  TR  Ecoli 

WQ 
W 

Source 1  Agriculture  Low  100  0  1  0  1  10  5  10  5  0  0  3 

Source 2  Agriculture  Low  100  0  1  0  1  10  5  10  5  0  0  3 

Source 3  Agriculture  Low  100  0  1  0  1  10  5  10  5  0  0  3 

Source 4  Town  High  300  0  1  0  1  10  3  10  2  0  0  3 

Source 5  Town  High  300  0  1  0  1  10  5  10  5  0  0  3 

Source 6  Town  High  300  0  1  0  1  10  5  10  1  0  0  3 

Source 9  Town  Low  100  0  1  0  1  10  5  10  2  0  0  3 

Source 10  Town  Low  100  0  1  0  1  10  4  0  3  0  0  3 

Source 11  Agriculture  Low  100  10  1  10  4  10  1  10  2  0  0  3 

Source 12  Agriculture  Low  100  10  1  0  1  10  5  10  3  0  0  3 

Source 13  Agriculture  High  300  10  1  10  1  10  4  10  4  0  0  3 

Source 14  Agriculture  High  300  0  1  10  1  10  5  10  4  0  0  3 

Source 15  Agriculture  Low  100  10  1  0  1  10  3  10  4  0  0  3 

Source 16  Agriculture  Low  100  10  5  10  5  10  2  10  1  0  0  3 

Source 17  Agriculture  Low  100  0  1  0  1  10  2  10  1  0  0  3 

Source 18  Agriculture  Low  100  0  1  0  1  10  2  0  1  0  0  3 

Source 19  Agriculture  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 20  Town  Low  100  0  1  0  1  10  3  10  1  0  0  3 

Source 21  Town  High  300  0  1  0  1  10  3  10  1  0  0  3 

Source 22  Town  High  300  0  1  0  1  10  5  10  1  0  0  3 

Source 23  Town  High  300  0  1  0  1  10  1  10  1  0  0  3 

Source 24  Town  Low  100  0  1  0  1  10  1  10  1  0  0  3 

Source 25  Town  High  300  0  1  0  1  10  1  10  1  0  0  3 

Source 26  Town  High  300  0  1  0  1  10  1  10  1  0  0  3 

Source 27  Town  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 28  Town  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 29  Agriculture  Low  100  10  5  0  1  10  5  10  4  0  0  3 

Source 30  Agriculture  High  300  0  1  0  1  10  1  0  1  0  0  3 

Source 31  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 

Source 32  Agriculture  Low  100  0  1  0  1  10  2  0  1  0  0  3 

Source 33  Agriculture  Low  100  0  1  0  1  10  4  0  1  0  0  3 

Source 34  Agriculture  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 35  Agriculture  Low  100  0  1  0  1  10  4  0  1  0  0  3 

Source 36  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 

Source 37  Agriculture  Low  100  0  1  0  1  10  4  10  2  0  0  3 
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ID  LANDUSE 
Int 
Vuln  Int V  VOC 

W
VOC  SOC 

W
SOC  IOC 

W
IOC  RAD 

W 
RAD  TR  Ecoli 

WQ 
W 

Source 42  Agriculture  High  250  0  1  0  1  10  1  0  1  0  0  3 

Source 43  Agriculture  High  250  0  1  0  1  10  1  0  1  0  0  3 

Source 44  Agriculture  Low  100  0  1  0  1  10  1  10  2  0  0  3 

Source 45  Town  High  300  0  1  0  1  10  4  10  2  0  0  3 

Source 46  Town  High  300  0  1  0  1  10  2  10  1  0  0  3 

Source 47  Town  High  300  0  1  0  1  10  1  10  1  0  0  3 

Source 48  Town  High  300  0  1  0  1  10  1  10  1  0  0  3 

Source 49  Agriculture  Low  100  10  5  0  1  10  1  10  1  0  0  3 

Source 50  Agriculture  High  300  10  1  0  1  10  4  10  2  0  0  3 

Source 51  Agriculture  High  300  10  5  0  1  10  3  10  2  0  0  3 

Source 53  Agriculture  Low  100  0  1  0  1  10  1  10  1  0  0  3 

Source 54  Agriculture  Low  100  10  1  0  1  10  3  10  2  0  0  3 

Source 55  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 

Source 56  Town  High  300  0  1  10  2  10  4  10  2  0  0  3 

Source 57  Town  High  300  0  1  10  1  10  4  10  2  0  0  3 

Source 58  Town  High  300  0  1  10  1  10  4  10  2  0  0  3 

Source 59  Town  High  300  0  1  0  1  10  4  0  2  0  0  3 

Source 60  Town  High  300  0  1  10  1  10  5  10  2  0  0  3 

Source 61  Town  High  300  0  1  10  2  10  4  10  4  0  0  3 

Source 62  Town  High  300  0  1  10  1  10  3  10  5  0  0  3 

Source 63  Town  High  300  10  5  10  2  10  5  10  5  0  0  3 

Source 64  Town  High  300  10  5  10  2  10  4  10  5  0  0  3 

Source 65  Town  High  300  10  5  10  5  10  4  10  5  0  0  3 

Source 66  Town  High  300  0  1  10  4  10  4  10  5  0  0  3 

Source 67  Town  Low  100  10  1  0  1  10  5  10  5  0  0  3 

Source 68  Town  High  300  0  1  10  4  10  2  10  5  0  0  3 

Source 70  Town 
Mod
erate  200  10  1  10  2  10  3  10  5  0  0  3 

Source 71  Town  High  300  0  1  10  5  10  5  10  5  0  0  3 

Source 75  Town  High  300  0  1  0  1  10  5  10  3  0  0  3 

Source 76  Town  Low  100  10  1  0  1  10  4  10  1  0  0  3 

Source 77  Town  High  300  0  1  0  1  10  1  0  1  0  0  3 

Source 78  Town  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 79  Agriculture  Low  100  0  1  0  1  10  1  10  2  0  0  3 

Source 80  Mining  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 81  Mining  High  300  10  1  10  1  10  5  0  1  0  0  3 

Source 82  Mining  High  300  10  1  0  1  10  5  10  2  0  0  3 

Source 83  Mining  High  300  0  1  10  2  10  5  10  1  0  0  3 

Source 84  Agriculture  Low  100  10  5  0  1  10  4  10  3  0  0  3 

Source 85  Agriculture  Low  100  0  1  0  1  10  3  10  3  0  0  3 

Source 86  Agriculture  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 87  Mining  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 88  Mining 
Mod
erate  200  0  1  0  1  10  1  0  1  0  0  3 

Source 89  Agriculture  Low  100  0  1  0  1  10  1  0  1  0  0  3 
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ID  LANDUSE 
Int 
Vuln  Int V  VOC 

W
VOC  SOC 

W
SOC  IOC 

W
IOC  RAD 

W 
RAD  TR  Ecoli 

WQ 
W 

Source 90  Town  Low  100  0  1  0  1  10  3  10  5  0  0  3 

Source 91  Town  Low  100  0  1  0  1  10  2  10  5  0  0  3 

Source 92  Mining  Low  100  0  1  0  1  10  2  10  3  0  0  3 

Source 93  Mining  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 94  Mining  High  300  0  1  0  1  10  1  0  1  0  0  3 

Source 95  Mining 
Mod
erate  200  10  1  0  1  10  2  10  3  0  0  3 

Source 96  Mining  Low  100  0  1  0  1  10  1  0  1  0  0  3 

Source 97  Mining  Low  100  0  1  0  1  10  3  0  1  0  0  3 

Source 98  Mining  High  300  10  5  10  1  10  3  0  1  0  0  3 

Source 99  Agriculture 
Mod
erate  200  10  5  0  1  10  5  0  1  0  0  3 

Source 
100  Mining  High  260  0  1  0  1  10  1  0  1  0  0  3 
Source 
101  Agriculture 

Mod
erate  200  0  1  0  1  10  2  0  1  0  0  3 

Source 
102  Mining  Low  100  0  1  10  3  10  5  0  1  0  0  3 
Source 
103  Town 

Mod
erate  200  0  1  0  1  10  1  0  1  0  0  3 

Source 
104  Town 

Mod
erate  200  0  1  0  1  10  1  0  1  0  0  3 

Source 
105  Agriculture  High  250  0  1  0  1  10  4  10  2  0  0  3 
Source 
106  Town 

Mod
erate  200  0  1  0  1  10  4  10  2  0  0  3 

Source 
107  Town 

Mod
erate  200  0  1  0  1  10  1  0  1  0  0  3 

Source 
108  Mining  High  267  0  1  0  1  10  1  0  1  0  0  3 
Source 
109  Agriculture  Low  100  0  1  10  5  10  5  10  3  0  0  3 
Source 
110  Agriculture  High  300  0  1  10  1  10  5  10  3  0  0  3 
Source 
111  Mining  High  300  0  1  0  1  10  5  0  1  0  0  3 
Source 
112  Mining  High  300  0  1  0  1  10  5  0  1  0  0  3 
Source 
113  Mining  High  300  0  1  0  1  10  1  0  1  0  0  3 
Source 
114  Mining  High  300  10  1  0  1  10  5  10  1  0  0  3 
Source 
115  Mining  High  300  0  1  0  1  10  5  0  1  0  0  3 
Source 
116  Agriculture 

Mod
erate  200  10  1  0  1  10  1  10  1  0  0  3 

Source 
117  Agriculture  High  300  0  1  0  1  10  5  10  1  0  0  3 
Source 
118  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 
Source 
119  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 
Source 
120  Agriculture  Low  100  0  1  0  1  10  5  10  2  0  0  3 
Source 
121  Mining 

Mod
erate  225  0  1  0  1  10  2  10  2  0  0  3 

Source 
122  Mining  High  300  0  1  0  1  10  1  0  1  0  0  3 
Source 
123  Mining  High  300  0  1  0  1  10  1  0  1  0  0  3 
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Table B1 Part B – NDEP Modified Method Data Values 

ID  Const 
Seal 
Dpth 

Case 
Ht  Screen 

Const 
W  UPGRAD  TOT  DTW 

CONF 
LAY  Mobile  Persist  Contm 

APP 
Meth 

Hydro 
W 

Vunl 
Calc  Total 

Source 
1  2  9  7  7  2  0  0  10  7  7  4  7  1  5  530  106 

Source 
2  2  9  7  7  2  0  0  10  7  7  4  7  1  5  530  106 

Source 
3  2  4  7  2  2  0  0  1  2  7  4  7  1  5  440  88 

Source 
4  2  4  2  2  2  7  6  9  2  7  4  7  1  5  385  231 

Source 
5  2  4  7  7  2  7  6  9  7  7  4  7  1  5  580  348 

Source 
6  2  1  7  7  2  7  6  9  7  7  4  7  1  5  454  272.4 

Source 
9  2  9  7  7  2  0  0  10  7  7  4  7  1  5  440  88 

Source 
10  2  1  7  2  2  0  0  1  2  7  4  7  1  5  254  50.8 

Source 
11  2  4  7  2  2  0  0  2  2  7  4  7  1  5  385  77 

Source 
12  2  4  7  7  2  0  0  2  7  7  4  7  1  5  450  90 

Source 
13  2  4  7  2  2  7  6  7  2  7  4  7  1  5  535  321 

Source 
14  2  4  7  2  2  7  6  7  2  7  4  7  1  5  535  321 

Source 
15  2  4  7  7  2  0  0  3  7  7  4  7  1  5  425  85 

Source 
16  2  4  7  2  2  0  0  1  2  7  4  7  1  5  530  106 

Source 
17  2  4  7  2  2  0  0  5  2  7  4  7  1  5  250  50 

Source 
18  2  1  7  2  2  0  0  2  2  7  4  7  1  5  199  39.8 

Source 
19  2  1  7  7  2  0  0  1  7  7  4  7  1  5  199  39.8 

Source 
20  2  1  2  7  2  0  0  2  7  7  4  7  1  5  284  56.8 

Source 
21  2  9  7  7  2  7  6  2  7  7  4  7  1  5  375  225 

Source 
22  2  9  7  7  2  7  6  3  7  7  4  7  1  5  440  264 

Source 
23  2  7  7  7  2  7  6  1  7  7  4  7  1  5  306  183.6 

Source 
24  2  1  7  2  2  7  6  5  2  7  4  7  1  5  279  55.8 

Source 
25  2  1  2  7  2  7  6  1  7  7  4  7  1  5  284  170.4 

Source 
26  2  1  2  2  2  7  6  1  2  7  4  7  1  5  249  149.4 

Source 
27  2  1  2  7  2  0  0  3  7  7  4  7  1  5  199  39.8 

Source 
28  2  1  2  7  2  0  0  1  7  7  4  7  1  5  189  37.8 

Source 
29  2  1  2  7  2  0  0  1  7  7  4  7  1  5  579  115.8 

Source 
30  2  4  2  7  2  7  6  3  7  7  4  7  1  5  270  162 

Source 
31  2  9  7  7  2  0  0  10  7  7  4  7  1  5  440  88 

Source 
32  2  9  7  7  2  0  0  10  7  7  4  7  1  5  290  58 

Source 
33  2  9  7  7  2  0  0  10  7  7  4  7  1  5  350  70 

Source 
34  2  9  7  7  2  0  0  10  7  7  4  7  1  5  260  52 

Source 
35  2  9  7  7  2  0  0  10  7  7  4  7  1  5  350  70 

Source 
36  2  4  2  2  2  0  0  1  2  7  4  7  1  5  340  68 

Source 
37  2  4  2  2  2  0  0  1  2  7  4  7  1  5  310  62 

Source 
42  2  4  2  7  2  3  4  9  7  7  4  7  1  5  270  135 

Source 
43  2  4  2  7  2  0  0  7  7  7  4  7  1  5  225  112.5 

Source 
44  2  7  7  7  2  0  0  9  7  7  4  7  1  5  311  62.2 

Source 
45  2  4  2  2  2  7  6  10  2  7  4  7  1  5  420  252 
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ID  Const 
Seal 
Dpth 

Case 
Ht  Screen 

Const 
W  UPGRAD  TOT  DTW 

CONF 
LAY  Mobile  Persist  Contm 

APP 
Meth 

Hydro 
W 

Vunl 
Calc  Total 

Source 
46  2  1  7  2  2  7  6  2  2  7  4  7  1  5  294  176.4 

Source 
47  2  4  2  2  2  7  6  9  2  7  4  7  1  5  295  177 

Source 
48  2  9  2  7  2  3  6  7  7  7  4  7  1  5  310  186 

Source 
49  2  9  7  7  2  3  6  10  7  7  4  7  1  5  485  97 

Source 
50  2  4  7  2  2  3  6  1  2  7  4  7  1  5  395  237 

Source 
51  2  1  7  7  2  3  6  1  7  7  4  7  1  5  514  308.4 

Source 
53  2  1  7  7  2  3  6  1  7  7  4  7  1  5  274  54.8 

Source 
54  2  4  7  7  2  0  0  3  7  7  4  7  1  5  365  73 

Source 
55  2  1  7  7  2  0  0  3  7  7  4  7  1  5  389  77.8 

Source 
56  2  1  7  2  2  7  6  7  2  7  4  7  1  5  469  281.4 

Source 
57  2  1  7  2  2  7  6  7  2  7  4  7  1  5  439  263.4 

Source 
58  2  4  7  2  2  7  6  7  2  7  4  7  1  5  445  267 

Source 
59  2  1  7  2  2  7  6  1  2  7  4  7  1  5  319  191.4 

Source 
60  2  1  7  7  2  7  6  5  7  7  4  7  1  5  494  296.4 

Source 
61  2  4  7  7  2  7  6  7  7  7  4  7  1  5  570  342 

Source 
62  2  4  7  2  2  7  6  5  2  7  4  7  1  5  495  297 

Source 
63  2  7  7  2  2  7  6  7  2  7  4  7  1  5  751  450.6 

Source 
64  2  1  7  7  2  7  6  9  7  7  4  7  1  5  754  452.4 

Source 
65  2  4  7  2  2  7  6  5  2  7  4  7  1  5  795  477 

Source 
66  2  4  7  7  2  7  6  3  7  7  4  7  1  5  640  384 

Source 
67  2  9  7  7  2  7  6  1  7  7  4  7  1  5  580  116 

Source 
68  2  9  7  2  2  7  6  1  2  7  4  7  1  5  545  327 

Source 
70  2  9  7  2  2  7  6  2  2  7  4  7  1  5  550  220 

Source 
71  2  9  7  2  2  7  6  1  2  7  4  7  1  5  665  399 

Source 
75  2  4  7  2  2  7  6  7  2  7  4  7  1  5  475  285 

Source 
76  2  1  7  7  2  7  6  7  7  7  4  7  1  5  444  88.8 

Source 
77  2  1  7  7  2  7  6  5  7  7  4  7  1  5  284  170.4 

Source 
78  2  1  7  7  2  7  6  5  7  7  4  7  1  5  284  56.8 

Source 
79  2  9  7  7  2  7  6  1  7  7  4  7  1  5  340  68 

Source 
80  2  1  7  7  2  3  6  1  7  7  4  7  1  5  244  48.8 

Source 
81  2  1  7  7  2  7  10  1  7  7  4  7  1  5  464  278.4 

Source 
82  2  1  2  7  2  7  10  1  7  7  4  7  1  5  484  290.4 

Source 
83  2  4  2  7  2  3  6  1  7  7  4  7  1  5  450  270 

Source 
84  2  4  7  2  2  0  0  1  2  7  4  7  1  5  500  100 

Source 
85  2  4  2  2  2  0  0  1  2  7  4  7  1  5  310  62 

Source 
86  2  1  2  7  2  0  0  1  7  7  4  7  1  5  189  37.8 

Source 
87  2  4  2  2  2  0  0  5  2  7  4  7  1  5  180  36 

Source 
88  2  4  7  7  2  3  10  1  7  7  4  7  1  5  270  108 

Source 
89  2  4  7  7  2  7  6  1  7  7  4  7  1  5  270  54 

Source 
90  2  4  7  7  2  3  10  5  7  7  4  7  1  5  500  100 

Source 
91  2  4  7  7  2  3  10  5  7  7  4  7  1  5  470  94 

Source 
92  2  4  2  7  2  0  0  1  7  7  4  7  1  5  315  63 
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Ht  Screen 

Const 
W  UPGRAD  TOT  DTW 

CONF 
LAY  Mobile  Persist  Contm 

APP 
Meth 

Hydro 
W 

Vunl 
Calc  Total 

Source 
93  2  4  2  7  2  0  0  1  7  7  4  7  1  5  195  39 

Source 
94  2  4  2  7  2  3  6  1  7  7  4  7  1  5  240  144 

Source 
95  2  4  2  7  2  3  6  1  7  7  4  7  1  5  390  156 

Source 
96  2  1  2  7  2  0  0  1  7  7  4  7  1  5  189  37.8 

Source 
97  2  4  2  2  2  0  0  1  2  7  4  7  1  5  220  44 

Source 
98  2  1  2  7  2  7  10  1  7  7  4  7  1  5  514  308.4 

Source 
99  2  4  2  7  2  3  10  5  7  7  4  7  1  5  550  220 

Source 
100  2  4  2  7  2  3  6  1  7  7  4  7  1  5  240  124.8 

Source 
101  2  9  7  7  2  7  10  7  7  7  4  7  1  5  360  144 

Source 
102  2  9  7  7  2  0  0  1  7  7  4  7  1  5  425  85 

Source 
103  2  4  7  2  2  0  0  1  2  7  4  7  1  5  170  68 

Source 
104  2  1  2  2  2  0  0  1  2  7  4  7  1  5  154  61.6 

Source 
105  2  4  2  2  2  7  8  1  2  7  4  7  1  5  385  192.5 

Source 
106  2  1  7  7  2  3  10  7  7  7  4  7  1  5  444  177.6 

Source 
107  2  1  7  7  2  3  6  7  7  7  4  7  1  5  274  109.6 

Source 
108  2  4  2  2  2  3  10  1  2  7  4  7  1  5  225  120.15 

Source 
109  2  1  2  7  2  0  0  1  7  7  4  7  1  5  549  109.8 

Source 
110  2  4  2  7  2  3  8  1  7  7  4  7  1  5  490  294 

Source 
111  2  4  2  7  2  3  6  1  7  7  4  7  1  5  360  216 

Source 
112  2  4  2  7  2  3  6  1  7  7  4  7  1  5  360  216 

Source 
113  2  1  2  7  2  3  6  1  7  7  4  7  1  5  234  140.4 

Source 
114  2  4  2  7  2  0  0  5  7  7  4  7  1  5  395  237 

Source 
115  2  1  7  7  2  7  10  1  7  7  4  7  1  5  404  242.4 

Source 
116  2  9  7  7  2  7  10  7  7  7  4  7  1  5  390  156 

Source 
117  2  4  7  2  2  7  10  1  2  7  4  7  1  5  405  243 

Source 
118  2  4  7  7  2  0  0  10  7  7  4  7  1  5  430  86 

Source 
119  2  4  7  7  2  0  0  7  7  7  4  7  1  5  415  83 

Source 
120  2  4  7  7  2  0  0  3  7  7  4  7  1  5  395  79 

Source 
121  2  4  2  7  2  0  0  2  7  7  4  7  1  5  290  130.5 

Source 
122  2  1  2  7  2  7  8  1  7  7  4  7  1  5  264  158.4 

Source 
123  2  1  2  7  2  7  6  1  7  7  4  7  1  5  254  152.4 
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Figure B1 – NDEP Variogram 
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